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analysis, the impedance surface patch is represented as an equivalent aperture
in the rest of the perfectly conducting convex cylinder. Approximate
asymptotic expressions for the "equivalent aperture distribution;" i.e., for
the "currents on the impedance surface patch" are developed in this work for
the two source types; these expressions for the currents are valid in the
neighborhood of the source. The radiation pattern of this configuration is
then found in a straightforward manner by numerically integrating this current
distribution in conjunction with a simple and accurate asymptotic high
frequency form of the perfectly conducting, convex cylinder Green's function.-
Since the cylinder Green's function is employed, one needs to integrate only
over the currents which exist on the impedance surface patch (i.e., over the
equivalent aperture) and not over the currents on the remaining, perfectlv /
conducting, portion of the cylinder.-Radiat on pattern calculaions based on
this analysis are found to compare quite well with a numerical moment method
type solution, a previous GTD solution for those impedances which support an
Elliot mode, and also with some presently available experimental results. It
is seen that a moderately large increase in the radiation intensity can bA -
obtained in the vicinity of the horizon for cylinders loaded by an impedance
surface which support Elliot type modes.
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EVALUATION

This is the final report on Contract F19628-77-C-0107. It covers

research and experiments performed during the period 6 January 1977 to

5 January 1979. The objective of the work was to increase the radiation

intensity near the horizon of a magnetic line source, or a magnetic line

dipole, located on a uniform impedance surface patch which partly covers

an electrically large perfectly conducting convex cylinder. Various

methods for analyzing and computing the radiation patterns of such magnetic

sources are described and the near and far fields can be predicted fairly

well.
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CHAPTER I
INTRODUCTION

An approximate, asymptotic high frequency analysis of the
radiation patterns is presented for a two-dimensional (2-D) mag-
netic line source or a magnetic line dipole source located on a
uniform impedance surface patch which partly covers an electrically
large, perfectly conducting convex cylinder as in Figure 1. The
purpose of this work is to assess the effects of such an impedance
loading on the radiation patterns with a view towards being able
to increase the pattern level in the vicinity of the horizon.
The latter application is of interest in the design of a crossed-
slot type fuselage mounted airborne antenna for satellite communi-
cation purposes. On a large, perfectly conducting convex cylinder,
a circumferential slot typically radiates a field at the horizon
(or shadow boundary) which is roughly 20 dB below that of an axial
slot. In the crossed slot application, it is therefore desirable
to enhance the fields of a circumferential slot near the horizon
by impedance loading, while at the same time not significantly
degrading the performance of the axial slot in the crossed slot
antenna configuration.

In the present method of analysis, the impedance surface is
represented by an equivalent aperture in an otherwise perfectly
conducting convex cylinder. Approximate, asymptotic expressions
for the "equivalent-aperture distribution" corresponding to the
surface currents excited by a source on the impedance patch are
developed for both the magnetic line source and the magnetic line
dipole cases. A magnetic line source simulates a thin axial slot;
whereas, a magnetic line dipole simulates a thin circumferential
type slot. The asymptotic expressions obtained for the surface
currents on the impedance patch remain valid in the vicinity of
the source at Q1. The radiation pattern of the configuration in
Figure 1 is then found in a straightforward fashion by numerically
integrating this current distribution in conjunction with an ac-
curate, asymptotic form of the perfectly conducting, convex cyl-
inder Green's function as given by Pathak and Kouyoumjian[1]; a
slightly improved version of this Green's function also appears
in a report by Pathak and Huang[21. As a result of employing this
special cylinder Green's function rather than the usual free space
Green's function, one needs to integrate the currents only over



the impedance surface patch. This method of analysis will be re-
ferred to as the surface current integration method (SCIM). Radi-
ation pattern calculations based on this SCIM are found to compare
quite well with those obtained via a numerical moment method type
solution, a previous GTD solution for those impedances which sup-
port an Elliot mode,and also with some presently available experi-
mental results. A moderately large increase in the radiation
intensity can be obtained in the vicinity of the horizon for cyl-
inders loaded by an impedance surface which support Elliot type
modes[3]. An Elliot mode field is one which propagates on a curved
impedance boundary with negligible leakage, and is therefore usually
the dominant contributor to the field on such a surface; further-
more, as the curvature of the surface vanishes, it reduces to the
usual "bound" surface wave mode on a planar impedance surface.
It is noted that an Elliot mode can be excited by a magnetic line
source if the surface impedance is inductive; whereas, it can be
excited by a magnetic line dipole source if the surface impedance
is capacitive.

IMPEDANCE SOURCE
PATCH / OBSERVATION POINT

ON IMPEDANCE PATCH

Q'Q1 = L (ARC LENGTH)
PERFECTLY __CONDUCTG Q& a L2 (ARC LENGTH)CONDUCTING

PORTION OF THE L (LENGTH OF IMPEDANCE
CONVEX CYLINDER PATCH) = L, + LP

Figure 1--An illustration of an antenna on a perfectly conducting
convex cylinder which is partly covered

by an impedance patch.

This present work represents an important extension and gen-
eralization of some of the earlier work [2,4,5]. The earlier ap-
proach by Pathak[4J which led to a preliminary, asymptotic solution,
for this problem could be designated as the diffraction coefficient
or the geometrical theory of diffraction approach (GTD). A second
approach presented by Pathak and HuangR] which is based on the
numerical solution of the integral eqijation for this problem is
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designated as the MM-GTD approach 21. This numerical solution
was based on the moment method with some important simplifications
resulting from the use of uniform and accurate GTD approximations
for the excitation and the kernel of the integral equation. This
MM-GTD solutlon[21 is employed primarily as an independent check
on the GTD solution 41; it also serves as a check on the SCIM solu-
tion. The MM-GTD solution in [2), which employs the cylinder sur-
face Green's function as a kernel, is rather well suited for the
TE case. However, one needs to be careful in employing it to
thi TM case because the kernel is far more singular than for the
TE cate, and it then appears to be necessary to properly incorpo-
rate the edge conditions on the fields at Q, and Q in order to
obtain a completely stable numerical result. Whil some initial
success has been obtained for the TM case, further work is neces-
sary to complete the MM-GTD treatmeni more satisfactorily for this
case. Preliminary modifications and extensions of this work in
[2] and [41 were reported later by Pathak and Ersoy [5] in which
the SCIM procedure was outlined and a study of the asymptotic ap-
roximations for the surface currents to be employed in this SCIM
procedure was initiated.

The work based on the GTD approach in [4] is an extension
of the GTD solution of Hwang, Kouyoumjian and Pathak[61 for anal-
yzing the radiation by a magnetic line source on a perfectly con-
ducting box that is partly covered by a finite dielectric panel
(over the face on which the source is located). In contrast to
the work of Hwang et al.[6], a GTD analysis of the curved geometry

in Figure 1 requires the solutions to more and different canonical
problems, because of the complexity introduced into the analysis
by the presence of the curvature. In this context, it is noted
that the GTD solutions including the one in [11 and [4] are based
on the local properties of wave propagation and diffraction at
high frequencies, and can hence be "built up" from the asymptotic
solutions to appropriate canonical problems which accurately model
the local regions from where excitations or diffractions of the
fields take place. For example, the field at a far zone observa-
tion point which is generated by the source at Q' is obtained by
summing up the fields which propagate along the direct ray path,
from the source to the field point as well as along the various
diffracted ray paths such as those emanating from the ends of the
patches at Q and Q , and also those that are shed tangentially
after creeping arouhd the back of the cylinder upon being launched
from Q and Q The ray picture of the GTD as illustrated in Figure
2 is pysicaliy appealing as it provides an insight into the nature
of the radiation and diffraction mechanisms. The GTD analysis[41
was restricted to an impedance surface which would support an Elliot
mode and for which this mode alone would be the dominant contributor
to the fields diffracted from the edges of the impedance patch
at Q; and Q2" The other component of the surface field (i.e.,
besi es the Elliot mode field) diffracts not only from the edges

3
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of the impedance patch but also from the impedance surface via
a continual leakage along the ray propagation path from Q' to Q
or Q2" If this leakage is significant, then the diffraction frbm
just the Elliot mode may not provide a sufficiently accurate radi-
ation pattern near the horizon. One expects this leakage effect,
which is partly governed by the type of impedance, to become im-
portant as the cylinder size decreases. Furthermore, if the type
of impedance chosen does not support an Elliot mode field, then
this other field component i all that is left. For the latter
case, the GTD analysis of [4J must be substantially modified to
obtain a uniform diffraction coefficient for the diffraction from
the edges of the patch, of this component of the field which con-
tinually leaks (or sheds) energy from the impedance surface. A
uniform asymptotic solution of an appropriate canonical problem
which would lead to such a uniform diffraction coefficient is some-
what complicated and is not attempted at the present time. The
GTD technique presented in [4] is thus useful for sufficiently
large cylinders with a sufficiently long impedance patch on which
an Elliot mode can establish itself. It is noted that a pure Elliot
mode is established beyond a certain minimum launching distance on
the impedance patch. For more general situations; namely, for
the case when the cylinders are only moderately large and for im-
pedance surfaces which are not necessarily restricted to those
that can support an Elliot mode field, the approach based on the
SCIM appears to lead to a relatively simpler and sufficiently prac-
tical method of solution for the problem in Figure 1. Furthermore,
this SCIM solution is constructed without essentially losing much
of the physical insight provided by GTD solutions. Also, the SCIM
can take into account impedance surface patches which are reasonably
small; more will be said about this in Chapter III. It is noted
that while the SCIM can handle more general situations than the
previous GTD solution, it is also restricted at this time as is
the latter solution to an impedance surface which is uniform (or
at the most one which is very slowly varying if it is non-uniform).
The MM-GTD procedure[2] can tak? non-uniform impedance into con-
sideration quite easily; however, it does not provide the physical
insight afforded by the SCIM.

It may >e mentioned that Wait[7-12] has done considerable
work on the asymptotic calculation of the surface fields which
are diffracted past an impedance discontinuity as at Q and Q
of Figure 1. Indeed, some of his work[7,g,12] has bee; helpfbl
in the asymptotic analysis of the currents which exist on a curved
impedance boundary. Nevertheless, Wait's results have not been
directly applied here, as they do not furnish surface current repre-
sentations which are suitable in the construction of an approximate
solution based in particular on the SCIM. Additional comments
comparing Wait's results with the ones developed here are presented
in Section lIB. Also, Shapira, Felsen and Hessel[13,14] have anal-
yzed the radiation from an active slot in an array of slots on

k5



a perfectly conducting convex cylinder via asymptotic techniques;
they employ a local periodic structure (LPS) model in which the
array is viewed as an effective surface impedance. They also in-
clude the edge effects arising from finiteness of the array. It
is noted that the surface fields obtained in the LPS method of
[13] is not valid in the close neighborhood of the source; whereas,
in the SCIM, it is important to obtain a surface field represent-
ation which remains valid in the source region as is done in this
work. Furthermore the radiated field in the LPS method of [13] is
not as easily obtained in the vicinity of the horizon as it is
with the SCIM.

The organization of this dissertation is as follows. Chapter
II describes the method of solution based on SCIM. The starting
point of this solution is a generalized reaction formulation of
the problem which leads to an integral representation for the fields
radiated by the configuration in Figure 1. This integral repre-
sentation is obtained in terms of the surface fields on an equiva-
lent aperture corresponding to the extent of the impedance surface
patch. The approximate, asymptotic expressions developed in here
for these surface fields over the impedance patch are also indi-
cated in that chapter together with a brief description on the
final steps involving the integration of these surface fields to
obtain the radiated fields. Chapter III discusses the accuracy
of the solution obtained via SCIM. Numerical results illustrating
the effect of different values of impedances and cylinder sizes
on the radiation patterns of a magnetic line source or a magnetic
line dipole source at Q' are presented in Chapter IV. The major
conclusions of this work are presented in Chapter V. Analytical
details pertaining to the development of the present SCiM solution
are outlined in several appendices.

6

.................



CHAPTER II
METHOD OF SOLUTION

The method of solution employed here for treating the radi-
ation problem depicted in Figure 1 is discussed in this chapter.
As pointed out earlier, in this solution based on the SCIM, the
impedance surface patch is viewed as an equivalent aperture in
the rest of the perfectly conducting convex cylinder. The field
radiated by this configuration is then expressed in terms of an
integral just over the surface current distribution which exists
on the aperture (or the impedance surface patch) because one em-
ploys an asymptotic high frequency form of the perfectly conducting
convex cylinder Green's function in this radiation integral. The
formulation of this radiation integral over the equivalent current
distribution in the aperture is discussed in part A of this chapter.
The surface current distribution on the impedance patch, which
is produced by the source at Q' is approximately found from the
asymptotic solutions to two auxiliary canor-:al problems. The
solutions to these auxiliary canonical problems and the form of
the surface currents on the impedance patch are discussed in part
B. The final step in the solution involves incorporating the sur-
face currents found from part B into the radiation integral of
part A, and then evaluating this integral to obtain the radiated
field. The latter integration is performed efficiently and in
a straightforward manner via standard numerical technious as
discussed in part C. In the following analysis, an ejW time
dependence will be assumed and suppressed.

A. Formulation of the Radiation Integral

The pertinent radiation integral may be obtained in several
different ways. The procedure by which this radiation integral
is obtained in the present work is based on a generalization of
the reaction theorem[15,16J. The same radiation integral could
also be obtained via an application of the scaler Green's theorem
(since the problem considered here is two-dimensional), or the
dyadic Green's theorem (and it's specialization to the two-dimen-
sional vector problem considered here), or an afplication of the
compensation theorem for electromagnetic fields L17i. In the methods
based on the Green's theorems, an appropriate Green's function
which satisfies the boundary conditions for a perfectly conducting
convex cylinder must be employed. The generalized reaction theorem
which is employed here for formulating the radiation integral is
somewhat related to the other methods mentioned above; it is chosen

7
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as it allows one to treat both, the TE and the TMz cases simul-
taneously for this vector problem. z

Consider the integral expressions relating the electric and
magnetic fields (E',b ) generated by a magnetic current source
N at P which radiates in the presence of the actual or perturbed
geometry of Figure 3, to the fields (E 1,1) generated by a test
source T at P' which radiates in the pFes~nce of the unperturbed
geometry of the same figure. This integral relationship indicated
below in (8) is obtained in a manner similar to that done in a
previous report[5] . Here, the perturbed problem refers to a closed,
perfectly-conducting surface partly covered with an impedance sur-
face patch; whereas, the unperturbed problem refers to the same
perfectly-conducting surface without the impedance surface patch.

NORi P

/ !A(Hb) Eo,Ho ~
\ / NS1 I 0

I I , ,

\Z=0SI+S 2 3S 0z=
^NSo r ONS S /

\ / \1n
A / A

(a) ACTUAL OR PERTURBED (b) UNPERTURBED PROBLEM
SCATTERING PROBLEM

Figure 3--The actual scattering problem, and the
related unperturbed problem.

In the case of the unperturbed problem, the test source, T
is assumed to be either an electric line source in which case the
fields generated by this source will be denoted by (E'ie , or

T ismnetic line source, generating fields which re enoted
by ( , . The following analysis will reveal that, the fields

4 'eo) can be related to the fields (Ebfk) for the case when
M s magnetic li4e._ipole source, i.e., ?or the TM -case; like-
wise the fields (?"",H) can be related to the fieldsZ( -ff.) for
the case when N is0a Magnetic line source, i.e., for thT T_-case.
From Maxwell's equations, one obtains z

8
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v Z = jk 'R_; ife. j k Y! + _T i f Tz=JT .
0 0 0'0T(ab

and

Vx!= -JkZ FI'm - HT; vx1I. = JkY 0r. ; i f TAT~ (2a,b)

Furthermore (!r "I 0 satisfy the radiation condition over the surface
z at infinity, nd i. satisfies the following boundary conditions
on the su rface s;

ix*Ee--m = 0 . on s. (3)
0

In (1) and (2) k is the free space wavenumber, and Z =1/Y0
is the free space impedance (i.e., Zo=120 wtohms).0 0

The fields, !.E~ I Rb of the perturbed problem also satisfy the
Maxwell's equation

vx*E = -jkZ o Rb -R; VAR = j kYO!'b (4a,b)

and the radiation condition over the surface z at infinity. Also
'Eb andR 1b satisfy the following boundary conditions on s:

(A (b)^ =ZS^X-fb on 1  (a

n-E nx= ) on S2  (5b)

where Zs denotes the value of the surface impedance in the perturbed

Combination of (2), (4) and (1), (4) respectively yields

V. ' fnx1b - 'rb x1 oo ' = o 'T "b' T E zcase (6)

and

V .Lte- Ab - 'EbX~ =~ I q-fe__, TM- c a se (7)

Applying the divergence theorem to (6) and (7) and using the radiation
condition on 2, and the boundary conditions (3) and (5) yields:

9



e

if ds~(QP)EZs(Q)xfixfl1b(QIP))

Ifff dvtRle(PIP').MR(P)+!b(P-IP)ST(P')],
V j f T=-Jt

(8)

The volume v is enclosed between the closed surfaces s-s +s and E
(which receeds to infinity). The noottion of the type (AJ in
the argument of the field functions 091an d (E' *R ) is introduced
for convenience, and it refers to the field at k'dbe to source
at B. Specializing the above equations to the two-dimensional
field and source configurations (i.e., configurations which are
uniform in the 2-direction), one obtains

fi dilSQP.Z()xfixIfb(QIP)]=

ffdxdy1R(PIPs).MR(P)+ffdxdyrb(P' iP)*T(P')

(9)

ffdxdy(PIP)M(P)-ffdxdy1b(P IP).T(PI)

The regions sM and sT are the cross-sectional areas of the 2-0 source

distribution FM and TI, respectively. Also, ds in (8) is given as ds
= dtdzO with dz>O; hence, the 2-D arc length integral on the boundary
s, (LHS of (9)) is chosen to proceed in the direction for which dt in-
creases in the positive sense. Let the 2-D sources IR and TI be

= ~fi(~~p)(10a)

10



T - (lob)

tt(GP-pp,). if T-Rt
Let the point P' in (9) receed to infinity; whereas, the point P is
moved down to the point Q1 on the surface. Thus,

f dt11(QIP').Zs(Q)fxx1b(QIQ')] 3 (QIp')( . b(P'IQ')3 t

for the TMz case with A-fMd and 
3t"z (1la)

ds ( 0 [ s( )^x xT'b(&IQ') = ro-(Q. 1P. '. -b(P-1Q.')-^ t

for the TEz case with mi=^M and A t =Z. (11b)

The' b(P'IQI) in the TM. problem pertaining to (11a) is the electric
field whi h is producedzat P' (in the far zone) by a unit strength tan-f ential magnetic line dipole source at Q1 on the surface s ; whereas,
(P'I') is the magnetic field in the TE problem in (11bj which

A produced at P' (in far zone) by~a unit strenth magiletic line
source at Q' on the surface s* W (Q' or &|P1 and T' (Q' or
Or) are the magnetic fields indu2ed at Q' r on th unperturbed
surface s of FiUre 3 due to a test source T at P' in the far zone.
In the case o 147, the test source is an electric line source;
wheras, for 4, !kemSt source is a magnetic line source. The
expressions fBr1 H' are available in [1,2] in terms of the
GTD approximation which will be employed here. The GTD approxi-
mation is valid for electrically large cylinders; the latter is
assumed to be valid in the present analysis. Thus the ! and
'R on RHS of (11a) and (11b) may be found if AxH1 (41Q') iksidC
the integrals on the LHS of (11a;b) are known. Th4 field nxRH (QIQ')
is the tangential magnetic field at D on the surface s of Pigure
3 due to a source at Q' also on s.. In the TM case, 1he source
at Q' is a tangential magnetic liie dipole; whereas, in the TE
case, the source is a magnetic line source as mentioned earlief.

An alternative expression for! (P'IQ') for the TM -case of
(11a) can be expressed in terms of eectric field quantities alone
via

11
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F(wiP ) " * = - (P'IQ') " 3t with 3t ^z (12)

as follows:

tEb(-IQ-) 0 z To(P'IQ.) ' -fd zrPl
dSi

[b(QIQ.) * i] (13)

Furthermore, it is shown below in section B that the unknown 'b(QIQ')
can be expressed as

Tb(QIQ') * £ = -Md 6(QIQ') + b(+IQ (14)

In (14), !b(QIQ') " 2 is the tkngential electric field of the mag-
netic line dipole source, R - T M 6(p-p ,) and it is observed on
the surface s which-lies "just ugderne th" the magnetic line dipole
source; wherels E (Q IQ').2 is the tangential electric fild of
the same source: dd this field is observed on a surface s which

lies "Just above" t e magnetic line dipole source. Here i must
be interpreted as Q = lim(p=p'+c;*) where Q' = (p',f') and £ is

£40
a pQsitive number, Explicit expressions for the electric field
T (QIQ') and b(Q IQ') of (14) are given in Appendix B. Equation
(4) is a well known expression for the discontinuity of the tan-
gential electric field as one moves from the surface sI to the
surface sI across a magnetic current.

When (14) is incorporated into (13), a further simplification
results so that the final form of Fb(P'IQ') becomes

Tb(P'IQ,) fd f dt[-(P'IQ) • ][ (QIQ) • 2] (15)

Si

IV (15) it is noted that the integral is performed on the surface
sI "Just above" the line dipole source.

The importance of introducing (15) will become evident in
section JC)~Vhere it is pointed out that the expression for the
unknown E (Q IQ') in the TH case is less complicated than the
one for the unknown Rb(Q'IQf of (11a) for the same TMz case.

An approximation for the unknown Z RxixnR (QIQ') in (11j;11b)
will be introduced next together with ah approximation for z

12
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B. Approximation for the Surface Currents
on the Impedance Patch

The current Z ixxl (QQ') of (11) which exists on the finite
length impedance srface bpatch s1 may be expressed as

-=[ h { TEz case
Z s nxnxb(QIQ') ="JKYoZs {_ d [G  + G , for the case

(16a)

and similarly the current! (Q IQ') " (= T.+nxr(Q+IQ'
which exists on the impedane surface patch s( is)

b(+IQ') • = -sMd[Ge(+Q) + GR(Q+jQ')]for the TMz-case

(16b)

where c_ is defined in (20c). M or M are the strengths of the
magnetiE line source or line dipole source at Q' for the TEz or

TMz case, respectively. The -JkY 0Zs f{_M G refers to that

component of the current which would exiMif the cylinder was
completely covered by an impedance surface. The quantity

-JkYoZ s [3 GR is then viewed as the correction or perturbation
to the current -JkY 0  {Mz } which arises from the

truncation of the impedance surface at Q, and Q2. The term

-JkYoZs J_'zJ thus refers to the component of the current which

is reflected from the ends of the patch at Q, and Q2"

Explicit expressions for G e(Q +IQ) is given in (B-44a) of
Appendix B. A comparison sf~4B7) with (B-44a) reveals that, an
asymptotic expansion for G (Q IQ') can be obtained from the asymp-
totic expansion for G1 by simply changing a and 0 in the latter
to a and B . The final form of G is giveh in (lDa). The quantity

G (Q IQ') which is analogous to Gh arises from the fact that the
Nipedance patch is of finite extent, and therefore there are re-
flections from the ends of the patch at Q1 and Q2 "

13



In particular the quantity -kY 0 'Mi G may be explic-

itly found from the canonical problrn ofitmlnlng the surface
fields of a magnetic line source or a magnetic line dipole on a
circular cylinder which is completely covered with an impedance
surface as in Figure 4. The radius of the cylinder is denoted
by a. The points on the impedance patch are specified by the arc
length t(=aj1.) along the surface of the cylinder and it is meas-
ured from the source. In appendix B, an asymptotic approximation
to G for the circular cylinder case is presented; this asymptotic
approximation is valid for electrically large cylinders which are
of interest in this study. While an exact circumferential elgen-

function (or modal) series expansion exists for G pertaining to
the circular cylinder case, it is poorly convergent for large cyl-
inders. Furthermore, this exact model series representation for
the circular case cannot be generalized to an arbitrary convex
cylinder.h In contrast, an asymptotic high frequency approximation

for the G pertaining to a circular cylinder becomes increasingly
accurate with an increase in the cylinder radius. Also, this as-
ymptotic solution can be generalized rather easily via the local
properties of high frequency field solutions to treat an arbitrary
convex cylinder with a slowly varying curvature as in the geometri-
cal theory Qf diffraction (GTD) procedure. The asymptotic approxi-

mation to G for the circular case is developed in sufficient detail
in Appendix B; hence, only the final results are sumarized below.

1 h (2) h1h ejkt h-bkt

., H o (kt)Fj(C) wT e e 20J.hJFkt)e

hT 2h k +

4a k ~ h J 2m

Gl Gh t< tm (17a)

-jap C
-jkt coe e

4nm P 0 ap+(ahkM) m

and

14



-DIRECTED

(a) TE, -CASE

x *-DIRECTED

DI POLE SOURCE

(b) TM, -CASE

Figure 4--Geomet-ies of canonical problems of a line source on
a circular cylinder covered completely by an

impedance surface.
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k a s 8 if d \)T

Cs+W (kt)

0 ~/(kt) f1-2z ez Q(z)}j1 + 4T(i o ) 2F-(kt)

G sa2- JPEt< ltm (18a)

4,rk m P0o a.,-(gskm)2

where t is the maximum total impedance patch size beyond which
the asyflptotic representation of the currents in (17a) and (18a)
cannot be trusted. An empirical equation for tm is presented in
Chapter III. Also, in (17)

FhIY 3/2 + 7 E+ 9/2 + * (19a)

f F(k)2 ~e h e t Q(iThjk)e h<O h -F~r(19b)

1/3

t =Ej~ = m 1 ; m =()(19c,d,e)

1h a jkIs Oh =fk2 +cth 2nXh (19f,g)

bh a14~ h lahI' (19h,i)

16
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are the roots of wi(a)- mk w4(o) = 0 where wYo) = w[Bi(o)-jAi(o)]
i the Fock-type Airy funct on. The prime over w indicates the deriv-
ative with respect to the argument. These roots gave been extensively
studied by Wait[7] and Logan[20], (also see Appendix B).

Similarly, the quantities in (18) are defined as follows:

F 1 -= 4i - 2V + 4 + j j C9/2 + * (20a)

"Jest eJkt
F-(kt)= eTs Cs Q(z)ez ; cs<0 (20b)

2s 2s 2

as = -jk Vs ; Os =  = 2 Xs  (20c,d)

aF4; act = -jxsj z jg Jt (20e,f,g)

es5>so} (20h)

in which the z of (20-g) is not to be confused with the z coordinates
(the present analysis is independent of the z coordinate) and Y =_I/Isis the surface admittance in mhos. a are the roots of w (o) -s k m

w2(a) = O.

The function Q is related to the complementary error function,
erfc such that

Q(l) = ,- erfc(s) = f e dx

It is important to point out that the asymptotic expansion for
Gs given in (18a) is not unique. A second asymptotic expansion for
Gs can be obtained from the tangential electric field (14) on s due
to a magnetic line dipole RI, and the impedance boundary conditin of
(5a). Carrying out the necessary calculations yields

GS(Q ') = aj 6(Q.Q') +(a) Ge(Q+p ') (21)

where the expression for Ge(+IQI) can be obtained from Gh of (17a)
by simply jhanging the h and 0 to a and 8 . Consequently, incor-
porating G of (21) into the H Oield integrai equation of (11a) yields

17

Now



Li tsh
identically the same result as the one which is obtained via the
E-field integral equation of (15) in conjunction with (16b). As
pointed out earlier, (15) in conjunction with (16b) is to be pre-
ferred over (11a) in conjunction with (18a) for purposes of nu-
merical calculations. It is interesting to note that if one adds
the zero term, "1-1" to the integrand of (846), one then again
arrives at (21) after an appropriate recombination of the terms
in the modified integrand.

h It is observed ethat th approximation in (17a) and (18a) for
G (and hence for G ) and G are in terms of tabulated functions,
and they can therefore be easily evaluated. The representations
in (17a), (18a) and (16b) are valid for the arc lengths Q'Q1 and
Q'Qi which are only moderately large. For larger impedance patch
len ths, i.e., for t> t , one mHst use a residue series represen-
tation of (17b) and (18W) for G and Gs, respectively. The de-
velopment of the residue series representations given in (17b)
and (18b) is also discussed in Appendix B; in particular, one is
referred to (B37) and (B74) of Appendix B. Such a residue series
representation has been studied extensively by Bremmer[211, Logan
[20], and Wait[7]. However, the alternative representations in
(17a) and (18a) which are valid close to the source appear to be
different from those obtained by Wait[12]. Furthermore, the an-
alysis [9] which was for a spherical surface, and only for the
TE case, is not directly applicable to the 2-D case of interest
here as it would lead to results that are not uniformly valid in
the vicinity of the source (for both the TEz and TMz cases).

The representation in (17a) and (18a) for the TE and TM
cases, respectively consists of several terms which hive an A-
portant physical significancR. The first set of terms in (17a)
and (18a) corresponding to G and G of (B1O) and (B49) in Appendix
B, respectively represent thi high ?requency currents on a per-
fectly conducting circular cylinder; whereas, the remaining terms
represent a perturbation or correction arising from the presence
of a non-zero surface impedance. Furthermore, the first terms
in (17a) and (18a) are expressed as a product of the currents on
a perfectly conducting planar surface and the perturbation effects
arising from the finite curvature of the perfectly conducting
circular cylinder. Also, the second set of terms in (17a) and
(18a) which represent an impedance perturbation to the perfectly
conducting circular cylinder, have the same form as the impedance
perturbation to a planar conducting surface. Thus, if these second
set of terms were used in conjunction with "only those parts" of
the first set of terms which correspond to the planar conducting
surface, one would then obtain the same asymptotic currents as
those on a planar impedance surface. Finally, the last set of
terms in (17a) and (18a) are additional corrections to the first
two sets of terms arising from a combination of curvature and
impedance effects. Further details on the physical interpretation

18
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of G for the completely impedance covered circular cylinder are
available in Appendix B. It is important to note however, that
the results in both (17a) and (18a) firstly reduce to the perfectly
conducting circular cylinder case if the surface impedance van-
ishes, provided a slight loss is introduced in the external medium
(free space) before performing the limit on (18a) to recover the
perfectly conducting case. Secondly, they reduce to the results
for the planar impedance surface as the curvature of the cylinder
becomes vanishingly small. Thirdly, the results in (17a) and (18a)
reduce to the results for a perfectly conducting planar surface
as the curvature vanishes, and the surface impedance also vanishes.
As pointed out earlier, the expressions for the surface currents
should be well approximated in the vicinity of the source in order
to obtain the radiation fields accurately. Since the radiation
patterns calculated via SCIM are found to agree very well with
those based on other trustworthy independent calculations, it is
inferred that (17a) and (18a) are adequate for describing the
source currents in the vicinity of the source.

The extension of the circular cylinder results in (17a) and
(18a) to an arbitrary convex cylinder with a slowly varying curva-
ture, in which the cylinder is completely covered by an impedance
surface is carried out by assuming that each point on the cylinder
may be approximated locally by a circular cylinder of the same
local radius of curvature at that point. As mentioned previously,
this procedure is based on the local properties of high frequency

fields as employed in the GTD procedure. Thus, one replaces t

of (1ga) by f , dt where Q is the observation point of the currents
on the impedaRce patch as shown in Figure 1; also, the Fock pa-
rameter, & of (19d) is replaced in the usual manner[221 by an
integral to account for the variation of the surface curvature.
To this end, one proceeds as follows. As in (19d)

= mj, a = ma (22a)

where a is the radius of the cylinder and t is the arclength defined
in (19c). Since m (given in (19e)) is assumed to be slowly varying,
then (22a) can be differentiated, yielding

d& m dt (22b)
Pg
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where p in (22b) is now the local radius of curvature. Integration

of (22b? from Q' to Q results with

m dt M fk p 9(t) \13(23)
' p

In (23), m may be taken outside the integral if one replaces

m by Jm(Q') m(N) to represent some type of averaging effect to
account for the slowly varying curvature; one notices that such
an averaging is the geometric mean of m between points Q' and Q.
Furthermore, this averaging effect is consistent with reciprocity.

In this work, the length of the impedance patch can be small;
however, it cannot be too small such that the source at Q' lies
close to either edge of the patch (at Q1 and Q of Figure 1).
This is not a serious restriction since in pratical situations
of interest here, the patch needs to be at least moderately large
enough in order to have a marked effect on the radiation patterns.
Over such moderate distances from the source to the edges, the
field component which continually leaks energy off the surface
(unlike an Elliot mode type field which leaks little energy) is
in general sufficiently weak at the edges of the patch to where
the reflection of this field which travel back toward the source
(while again shedding energy) may be neglected in the calculation

of the radiation field. Furthermore, even the approximate asymp-
totic calculation of these reflections appears to be a rather com-
plicated task which is not considered here. On the other hand,
the current can be substantially modified by the reflection of
an Elliot type mode field from the edges of the impedance patch.
Hence, the present analysis incorporates the reflection of such
an Elliot mode field through the use of a local reflection coef-
ficient defined at the edges of the impedance patch. This reflec-
tion coefficient is found from the solution to the canonical problem
of surface wave reflection from a discontinuity in planar impedance
boundaries as shown in Figure 5. To recapitulate, one therefore
basically assumes here that the total field incident on the edges
of the impedance patch generates a reflected wave on the surface
which is well approximated by only the reflected Elliot type mode
field, since this mode is the dominant contributor to the surface
field. The remaining, less significant component of the reflected
field which is neglected consists of propagating and non-propa-
gating (or evanescent) parts; the latter part does not contribute
to the radiated fields and it's exclusion is therefore justified.
The propagating part is essentially a non-surface wave type field
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Figure 5--Geometry of the canonical problem of surface wave
diffraction by a discontinuity in surface

impedance associated with two part,
planar impedance.

which leaks energy off the surface; in general it contributes suf-
ficiently weakly to the radiated field for impedance patch lengths
which are not extremely small and hence it is ignored.

f The canonical two part problem in Figure 5 above has been
analyzed via the Wiener-Hopf technique in conjunction with Weinsteins
factorization procedure[4}. The latter factorization procedure
leads to relatively simple Weiner-Hopf factors. From [4], it is
found that the surface wave reflection coefficient, R for this
problem is

Os'i u du as
Rs =j e o ; u sinh-1 cae TM case (24)

R h  e 7 f sinh 1 Iitn TEz case

(25)

The plots of Rh and Rs are illustrated in Figures 6 and 7, respect-
ively.

As pointed out earlier, Gh's represents the perturbation to
the current on the patch. Thi perturbation term arises from the
truncation of the impedance surface at Q, and Q2. In the following
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analysis, the subscripts "s" and "h" are dropped, since it is equally
applicable to both the TEz and the TMz cases.

Incorporating the above values of R, the GR can be calculated
via a self consistent procedure as follows:

The total incident current, G (Q ) at Q, consists of two terms
which are the current G(Q ) generatedlby the principle source and
observed at Q1, and the c~rrent, G (Q1j Q ) reflected from Q and
evaluated at Q1, i.e., G (Q G) = + 8(QI Q2) as shown in Fig-ure 8. The total in idet urrent R (Q2)"at Q can be found simi-

larly by interchanging subscripts I Ind 2, aboe. The term G (Q IQ2)
can be related to GT(Q2 ) via the reflection coefficient such ihat

-JQQ2
GD(Q IQ2) = R G (Q)e , where QQ2 denotes the arclength
b~twien Q and . Similarly, the tef G(QI Q ) (which arises
in the pr~cess o calculating G (Q )) can be written in terms of
R, G (Q ) andS . One may thin iolve for GT(QI) and G
It cin e shown t;t: T(Q2).

GT(Q1) G(Q1)+R e G(Q2 )
GT(Q1 ) = _______ . (26)

1 -R 2 e-j2BQIQ2

RGT(QR ) eGQ -/f /RG T ( Q, ) e-jR --i

GR(0Q IQ2) = RGT(Qz) e-jQ-

GT GT( Q!1)

02 rO 2

Figure 8--Incident and reflected rays associated with
the self consistent method.

Interchanging subscripts 1 and 2 in (26) gives the corresponding
expression for GT(Q2 ). One notes that (26) reduces to a more familiar
result when the source point is located at the center of the patch
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so that G(Q ) = G(Q ) in which case G (Q ) G(Q ) (1-R e
The perturbition current at a point Q ;n the patc; is then given
by the following equation

GR(Q) = R GT(Ql) e Q + RGT(Q2) e 
2  (27)

As the value of Z /Z becomes smaller than 0.5, the correspond-
ing values of IRs1 becomesolarger than 0.9 as seen from Figure
7. Such a large value of the reflection coefficient R implies
via (27) that a very large number of multiple bounces getween the
edges of the impedance patch remain significant in the calculation
of the TM Elliot mode field. In such a situation, the accuracy
of the prisent solution (SCIM) may be impaired, because, a small
error in the approximation to the Elliot mode field which is di-
rectly incident from the source onto the edges of the patch could
be compounded through each subsequent reflection (bounce) from
the edges. In practice, one would not employ values of 1Z /Z I
for which IR I is large anyway, as this is obviously not disipable
from an antehna design point of view.

Furthermore, the earlier assumption; that is, the propagating,
non-surface wave type fields which are generated by the "reflections"
of Elliot mode from the edges contribute sufficiently weakly to
the radiated field, does not hold for such large values of the
reflection coefficient. Excluding this non-surface wave field results
in an inaccurate representation of the currents on the patch in
the vicinity of the edges. However, as indicated earlier, an ac-
curate representation of the currents on the impedance patch is
essential for accuracy in the SCIM. One notes that in the SCIM,
an integration of the component of the current reflected from the
edges gives rise to fields diffracted not only from the edges on
which the reflected component terminates, but also from the op-
posite edges where the reflected component originates. The latter
"spurious diffracted field" contribution is sensitive to errors
in the currents at the edges; however, these errors are generally
not large if the reflection coefficient is sufficiently small.
An alternative approach for including the effects of multiple re-
flections in the total radiation field calculation is to simply
superpose the solution based on the SCIM but without including
the correction currents resulting from the reflections of the Elliot
modes, with the part of the GTD ray solution of [41 for calculating
the diffracted fields which result only from these reflections.
The latter GTD diffracted field contribution is calculated via
the self consistent approach for summing up the multiple reflec-
tions of the Elliot modes as indicated earlier. It is noted that,
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the GTD solution does not require an exact knowledge of the form
of the currents in the vicinity of the edges, hence it is suitable
for the evaluation of the contribution to the radiation pattern
from the multiple reflections. Furthermore, this alternative pro-
cedure is attractive from the point of making the numerical radi-
ation field calculations more efficient.

C. Numerical Evaluation of the Surface Currents
on the Impedance Patch

The last step of this analysis is to evaluate the integrals
in (Ila), (1Ib) and (15),e nMmrically over the impedance patch.
As pointed out earlier, He O'(QIP') is the magnetic field on the
i~pedance patch due to an electric (magnetic) line source at P;
H " ("IP') is a well behaved function of the arclength on the
cylinder and suitable for a numerical integration technique. The
explicit form of this magnetic field is given in [1,2] and will
not be repeated here.

The term nxlb(QIQ') in (11b) is related to (17a) via (16a).
As it can be seen from (17a), this tm has a log-type singularity
(small argument approximation for H (kt)) as the variable of
integration (i.e., the arclength) g8es through the source. Such
integrable singularities can be treated numerically in the computer
via Gaus' method. Thus, the TE case presents no numerical dif-
ficulties. However, the term nfTI (QIQ') in (Ila) is much too
singular for a numerical integraton scheme. In fact, f (18a),
with the useage of the small argument approximation of Hfikt)
one can show that this singularity is in the form2of an inverse
square of the arclength type (i.e., 1/(arclength) ). Such singu-
larities are not suitable for a numerical integration procedure
and therefore one must reduce the singularity by means of the
distributed source technique before any calculation work can be
done. To this end, one proceeds as follows for the nx b of the
TM case. Let the source be a distributed sinusoid such that the
distribution function, A(x') is given by

A(x') = sin k(w-jx'j) (28)sin kw

where 2w is the total extent of the source. The resulting current
on the patch from the sinsoidally distributed source can be found
by weighting the currents generated by an infinitesimal source
with the distribution function, A(x') and then integrating it from
-w to w, i.e.,
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nxgb/Q) =f A(x') nXAb(QIQ') dx' ,(29)

where H (&) and P (&IQ,) in (29) are the magnetic fields observed
at a po~t 0 on R~e surface of the patch due to a sinusoidally
distributed magnetic line dipole, and an infinitesimal magnetic
line dipole, respectively.

As mplioned above, the singularity of ;xR (&IQ-) in (29)
has the H, (kt) /kt form (see Equation '(18a)) wkich can be rewritten
as

= 1 + d2  ) I42 ( ) .(30)

In general, if a functionI F(kJ x-x'I) can be rewritten in
terms of another function f(kjx-x'I) via

F(klx-x'1) 1 [+ d f(klx-x'I) (31)

( then the integral of F(klx-x' I) with A(x') over the interval (-w,w)
can be expressed in terms of (k Ix-xlI) as follows

w /
I fA(xl) F(klx-x'l)dxl f= ~ x + d2  2)(klx-xlI)dx'.
-W -W d(klx-xIl)

(32)

Repeated application of integration by parts to (32) yields

1=Ax) 'kx-')W w w
I W)f(kxx')I -AI(x') f(klx-x'l) I+ fdx'IA(x')

-W -W -W

26

LM:.



where primes over the functions indicate derivatives with respect to
the argument.

The first term in (33) is zero because A(±w)=O. Furthermore the
last term in (33) is also zero, because A"(x') =-A(x'). Hence (33)
becomes

I = -A'(xl)f(klx-x'l)l O  - Al(x')f(klx-x'l)lw • (34)

-W

From the definition of A(x'), it can be shown that

d x = - cossinkW-xlU ; x'0 (35)

Txr A(X')n wVZ (5

Substituting (35) into (34) yields the desired relationship

fb~x ( d 2 fklx'd 1 j
b Ax) 1 + d(klx-x' f(klxx'l)dx' = sin kw [f(klx-wl)

+ f(klx+wl)-2 cos kw f(kIxI)] (36)

Substituting (30) into (18a) and employing (36) yields

27 o1 -r L o

i-b
-b O2's -s -das

F)(kIto- tIIIdt -+ A(to)es  (37)

where Gs is the integral of Gs of (18a) weighted by A(t') over
the interval -w to w. The t t and t-, are the arclengths be-
tween the observation point Q'on ?he patih and the points -w, o,
and w of the distributed source, respectively as shown in Figure
9. i and zi are defined in terms of ti in a similar fashion,ti

such that {i = m -- and zi = Jbs kti. The result in (37) can

be generalized to an arbitrary convex cylinder with a slowly vary-
ing curvature via (23).
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Figure 9--Sinusoidally distributed line source
and related parameters.

The resulting current on the patch due to a distributed source,
A(t') can now be written as follows

nXHb(QIQ') = -JYoMd(Gs +G)z (38)

9s can be obtained from (27), if one uses GS instead of Gs.

As it can be seen from (37), the highest singularity in (38)
is a log-type singularity; hence, the resulting integrals upon
substitution of (38) into (11b) can be evaluated numerically asprincipal values.

The alternative formulation of the TM1 discussed above in
Section IIB is recommended for the following reasons. Firstly, the
currents of (18a) to be employed in the reaction integral formula-
tion given in (11a) are highly singular at the source and therefore
it is very difficult to obtain a satisfactory mathematical repre-
sentation for the fields. Secondly an attempt at smoothing out
these singularities (as it is done above) for the purposes of
numerical treatment leads to a rather complicated and slow com-
puter code. It is however important to point out that the results
obtained from (11a) agree very well with other independent checks
such as MM-GTD and GTD techniques. Nevertheless, the electric
field integral representation given in (15) for the TM case is
superior to the one given in (11a) because the formulation in (15)
leads to source singularities which can be numerically integrated
in the principle value sense; this numerical treatment is not com-
plicated, and it leads to faster computer codes. Furthermore,
the computer code for numerically processing the electric field
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representation of (15) for the TM case can be obtained from the
code for the TE case (11b) with 6nly minor changes; hence, both
cases can be inEorporated into a single computer code. It is how-
ever important to note that, in the process of numerical integration,
one should divide the impedance patch into small enough segments
so that the integral subroutines can sample the variations of the
currents on the patch accurately. It is observed that the segments
which are as long as half an electric wavelength; i.e., w/o can
accurately be integrated via a 5-point Gaussian quadrature formula.
The a (Bh for TEz and 0s for TMz) is given in (19g) and (20d).

2[
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CHAPTER III
RELIABILITY OF THE SURFACE CURRENT INTEGRATION METHOD (SCIM)

This chapter is designed to establish the validity of the
present analysis by comparing it with other independent methods.
These numerical comparisons of the SCIM are illustrated only for
the circular cylinder geometry of Figure 10. Nevertheless, as
pointed out earlier, the present analysis based on the SCIM can
also be directly employed to treat convex cylinders of arbitrary
cross sections. For convenience, the source is located in the
middle of the impedance patch. The impedance patch width is de-
fined in terms of the angle, 4 measured from the source. The
angles, * and R specify the pbints on the impedance patch and
the observation direction in the far field, respectively.

The SCIM is compared with three independent methods. Two
of these methods are based on the different mathematical models
of the problem, and they are called the MM-GTD and the GTD formu-
lations. Some experimental results are also included as a third
method. It is noted that like the SCIM, the MM-GTD and GTD formu-
lations are also asymptotic in the sense that they are developed
for electrically large cylinders. The MM-GTD and the GTD formula-
tions are discussed in detail elsewhere [2,4] and some of the main
features of these methods have been discussed in Chapter I, hence
only a short summary of these methods will be repeated here for
completeness.

The MM-GTD, a hybrid technique, combines the method of moments
and the geometrical theory of diffraction. An application of the
generalized reaction theorem, in a manner analogous to that employed
in the development of the result in Figure 11, yields the governing
integral equation employed in the present MM-GTD formulation as:

[ qoz(QQ') • [Zs(a)^nx^x b(QlP)]dt =Ib('P .+oz(PIQ')•

1 For TEz case (39a)

n (IQ') A =-.(Q'IP) " T (PlQ') .0'rOb bQOT

For TMz case. (3gb)
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Figure 10--The antenna geometry and the related parameters.
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Figure 11--An illustration of the experimental set up.
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In (39), 'R and f^ are produced by the source MT=ZS(i-pnI); whereas
IT and O "are pr8duced by N =t,6(p-pn I). As ih the SCIM, the sub-
s8 ipts "8 and "b" in (39), aenotes tRe fields of the unperturbed and
perturbed problem respectively. Equations (39a) and 39b),_re first
order inhomogeneous integral equations with unknown 4" and H' re-
spectively, and they can be solved via the moment method technique.
What differentiates this method from the conventional moment method
solution of integral equations pertaining to electromagnetic prob-
lems is the fact that in the former one, the free space Green's
function is used as the kernel of the integral equation; whereas
in the present analysis, a uniform GTD approximation for the per-
fectly conducting convex cylinder Green's function constitutes
the kernel. This is the reason behind choosing the name MM-GTD.
At the present time, the MM-GTD solution for the TE case appears
to be very accurate; on the other hand, the TM cas6 is expected
to be only reasonably accurate since further w6rk is needed to
refine the MM-GTD procedure for the TMz case as indicated in [5].

The GTD method is a ray optical method, and the ray picture
for this problem is illustrated in Figure 2. The direct (or geo-
metrical optics) ray field and the fields diffracted from the edges
of the patch are calculated from appropriate canonical problems
for TM and TE cases as explained in [4]. It is noted that the
GTO solution pfesented in [4] is restricted to only those impedance
surfaces which can support an Elliot type surface ray mode field.

As indicated above, an experimental verification of the ac-
curacy of the SCIM solution is also carried out in this study.
This verification is for the TE case. The experimental set-up
consists of a 5 ft long, 3 incA radius cylinder, which models
the infinitely long perfectly conducting cylinder. An x-band wave-
guide feeds an axial slot in this cylinder as illustrated in Figure
11. Polyethylene layers which are 4 inches wide, and 0.058 inches
thick are employed to simulate the impedance patch. The value
of the impedance can be changed by altering the number of poly-
thelene layers. The measurements are conducted at 10.77 GHz.
At this operating frequency, the complex, dielgctric constant of
polyethylene is found to be E = (2.25 + j9xlO- )e; o being the
permittivity of the free space.

Comparisons of the results for the radiation patterns based
on the SCIM with those based on the MM-GTO, the GTD, and the experi-
mental data are presented in Figures 12 through 28.

The GTD patterns presented here appear to be reasonably accurate.
However, it is observed that the GTD results in [41 for the circular
cylinder TMz case in general need to be refined further to make them
as reliable as for the TE case, especially for a wider range of
parameters than those confidered in the GTD calculations presented
here. In the case of a cylinder with a very small curvature

32

_i



0o
0

-- 10

270 - L/ 2  rr L/2 .9a

ASYMPTOTIC ka = 360 Zs= j 150SI
SOLUTION (SCIM) 2 =4- TE z -CASE

--GTD"
(FLAT SURFACE) L=4X

Figure 12--Radiation patterns of a magnetic line source on
perfectly-conducting planar and circular cylindrical

surfaces which are partly covered with an
impedance surface patch.

(ka=360), the asymptotic analysis (SCIM) in Figures 12, 13, 14,
25 and 26 are also compared with the results obtained from the GTD
analyses for an impedance patch on a perfectly conducting ground
plane (which is the limiting case of a cylinder with vanishing
curvature.) These radiation patterns of an antenna on a flat
surface can be used to predict with reasonable accuracy the perti-
nent parameters of the radiation patterns in the lit region of
a similar antenna located on a cylindrical surface with small curva-
ture.

In Figures 15 through 22, and 27 and 28, the SCIM is compared
with the GTD and MM-GTD results. It is observed that the results
obtained from these three independent methods compare very well
with each other. However, it should be pointed out that there
are no MM-GTD results presented for the TM case. This is because
it is very cumbersome to obtain a satisfacfory MM-GTD solution
for this case at the present time, as has been mentioned before.
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Figure 13. Radiation patterns of a magnetic line source on
perfectly-conducting planar and circular cylindrical

surfaces which are partly covered with an
impedance surface patch.

The relative merits of these three methods (i.e., SCIM, MM-
GTD and GTD) are presented in Table I. In Figures 22, 23, and
24, where the SCIM is compared with experimental results, it is
modified by taking the impedance surface as being slightly lossy
to account for the loss in polyethelene panels. The loss is in-
troduced into ie solution as an exponential decay along the im-
pedance surface. From this point of view the solution may be con-
sidered as a perturbation to the lossless case. The SCIM is further
modified by introducing the effect of the finite source distribution
in the axial slot via a multiplicative slot pattern factor. The
polyethylene layers are modeled as an impedance surface. These
polyethylene layers which are 0.058 inches and 0.106 inches thick
for the two experimenltal cases may be approximated by an equiva-
lent impedance of Z =j70l and Z =j150 , respectively; this equiva-
lent inductive impeaance is basid on the flat surface approximation
and the corrections to this impedance arising from the curvature
of the cylinder have been ignored since the cylinder is over twenty
wavelengths in circumference.
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Figure 14. Radiation patterns of a magnetic line source on
perfectly-conducting planar and circular cylindrical

surfaces which are partly covered with an
impedance surface patch.

Finally, it is recognized that the TM case is very nearly
a dual of the TE_ configuration. The printiple difference is that
the TM source i a magnetic line dipole source which is of course
not a dual of the magnetic line source and the conducting part
of the surface in the TE case is not replaced by it's dual for
the TM_ case. Nevertheless, by a proper choice of surface im-
pedances, it is possible to generate patterns (for the TM, case) L
similar in naLure to the smooth patterns of the TE case resented
frterneo imeacssc ththg ripein this chapter. The following results for the TMz case are taken

radiation pattern. This is done merely to compare the SCIM with
the GTD solution in the domain where they both are valid, and to
supplement the computations for the smooth patterns for the TE
case. It is emphasized that smooth patterns can also be generated
for the TMz case as is shown in Figures 46 through 51.
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Figure 15--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 16--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 17--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 18--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 19--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 20--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 21--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 22--Radiation patterns of a magnetic line source on
a perfectly-conducting cylinder.

43



ASYMPTOTIC SOLUTION
* * . EXPERIMENTAL DATA

900

1800 00O

ka = 20
Zs= j 70SI

24 0 = 650

TE z -CASE

Figure 23--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 24--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 25--Radiation patterns of a magnetic line dipole source
on perfectly-conducting planar and circular cylindrical

surfaces which are partly covered with an
impedance surface patch.
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Figure 26--Radiation patterns of a magnetic line dipole source
on perfectly-conducting planar and circular cylindrical

surfaces which are partly covered with an
impedance surface patch.
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Figure 27--Radiation patterns of a magnetic line dipole source
on perfectly-conducting circular cylinder which is partly

covered with an impedance surface patch.
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Figure 28--Radiation patterns of a magnetic line dipole source
on perfectly-conducting circular cylinder which is partly

covered with an impedance surface patch.
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It is observed from these comparisons that the asymptotic
solution (SCIM) indeed agrees very well with the other independent
methods of analysis.

In the following paragraphs, the bounds for the asymptotic
analysis (SCIM) are studied. The basic parameters of interest
occuring in the SCIM are: (a) the distance from the source to
the edge of the patch, (b) the radius of the cylinder, and (c)
the value of the surface impedance. The range of these parameters
over which the SCIM remains accurate have been established in an
approximate fashion after an extensive numerical study. In par-
ticular, for a given value of impedance and the cylinder radius,
there is a maximum patch size beyond which the asymptotic repre-
sentation used in the SCIM for the currents on the impedance sur-
face are strictly not valid. As indicated previously in Chapter
II, the surface current on the impedance patch is assumed to consist
partly of the Elliot mode or surface wave type component which
propagates from the source to the edge of the patch, and secondly
it consists of the component which is termed as the non-surface
wave component, since the latter is the only current which propa-
gates to the edge of the patch if the impedance surface can not
support an Elliot mode field. Thirdly, there is a reflected com-
ponent of the current to account for the reflections of the current
incident on the edges of the patch. Also, as pointed out earlier
this reflected component of the current is assumed to be produced
by the Elliot mode field or surface wave component which inpinges
on the edge of the patch. A few typical plots of the magnitudes
of the equivalent magnetic surface current densities which exist
on an impedance patch located on a perfeclty conducting circular
cylinder are illustrated in Figures 29 through 34. The curr~nt
densities (Z sxfixf(QIQ') of (16a) for the TE -case and nxE ( IQ')
of (16b) for the TM -case) are plotted as a function of th arc-
length, t=a1,I/X, m~asured from the source placed at the center
of the impedance patch where X=2n/k and 1¢[ is the angle between
the source point and the observation point on the impedance patch.
As can be seen from these typical current plots, the amplitude
of the non-surface wave component of the current begins to grow
beyond a certain maximum distance, t /2 from the source. The non-
surface wave current approximation iT not expected to be accurate
beyond the immediate neighborhood of this distance, t /2. For
the TE -case, an empirical equation can be found rela~ing the maxi-
mum total patch size, t (as defined above and measured in wave-
lengths; i.e., 2a11 I/XT to the magnitude of the normalized im-
pedance, I z = IZ f/Z and the normalized radius of the cylinder,
ka. For th asymptotie form of the currents which are given in
section IB to order 1/(ka) , such an emperical equation has the
following form:

ka= [z I + 0.04] (3.1 t 2  2.6 t + 2.8) + 3.6. (40)
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Figure 31--Magnitude of the equivalent magnetic current density
on an impedance patch (which partly covers a circular

cylinder) as a function of the arclengt~ measured
from the source. Rh=0.2173/24(h

z - j3OO41 TM.-CASE

-Z j3OO0l ka .36
2Sz

0

MU

1. U.0

to w 46

Figure 32--Magnitude of the equivalent magnetic current density
on an impedance patch (which partly covers a circular

cylinder) as a function of the arclengtho esue
from the source. R5 =0.7825/121
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from the source. Rs=0.9292/1290.
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In Figure 35, Equation (40) is compared with the data obtained

from SCIM.

So o ka -18
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--; .+ ++ ka=54
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0
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o; RESULT
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MAXIMUM TOTAL PATCH SIZE,tm(x)

Figure 35--The maximum total patch size beyond which the asymptotic
form of the currents in (17a) and (18a) may not be trusted.

The surface current incident on the edge of the impedance
for the TM case of (15) is very similar in character to the cor-
respondingZTE case. The only essential difference between these
two cases is that the z in the TE case is replaced by y = Y /Y
in the TM case. Thus,S(40) may bi used for TMz case of 15) Ay 0
simply relacing zs by ys"
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It is noted that, (40) is a very conservative upper bound
for both the TE and the TM cases. This is particularly true
for the type ofZ impedances 6hich can allow an Elliot type of surface
wave mode to exist, since this is the dominant component of the
current and furthermore it remains valid even for distances larger
than t /2. Figures, presented in (12) through (28), indicate that
it is Wossible to obtain good agreement between the SCIM and other
independent methods for patch sizes well beyond those allowed by
(40). Typically, it is in general possible to treat half patch
widths of the order of tm with good accuracy.

For impedance patches which are larger than the limiting size
indicated above, one should use the asymptotic form of the currents
given in (17a) and (18a) up to t and then ,witch to the creeping
wave representation for the curr~nts which is explained in parts
(IC) and (IIC) of Appendix B, for the TEz and TMz cases, respec-
tively.

The component of the current reflected from the edges of the
impedance patch is calculated by simply multiplying the incident
Elliot mode field with a surface wave reflection coefficient R

which characterizes the discontinuity in the impedance at the 9dges.
This quantity, R is found in[41 via the solution to the problem

of the surface wve diffraction by a two part planar, impedance
surface. Multiple reflections between the edges of the patch are
then summed in a self consistent manner as explained in section
118. Plots of R, (corresponding to TE case) and R (corresponding
to TM case) are illustrated in Figurei 6 and 7, reipectively as
a funhcion of the surface reactance which is normalized to the
free space impedance. It is noted from these plots that R is
significantly higher than R for values of the normalized eact-
ance which are less than unt ty. Consequently, the component of
the current reflected from the edges of the impedance patch is
expected to play a significant role in the radiation pattern calcu-
lations for the TM case.

z
In general, the SCIM is not expected to be accurate for the

case when the magnitude of the reflection coefficient IR I approaches
unity. However, as mentioned at the end of section IIB, this is
not a serious restriction on the SCIM since an antenna wi*h such
a large reflection coefficient is not desirable. Under the present
assumption, the dominant reflected component of the current is
produced by the incident Elliot mode field. In order for this
assumption to hold, one requires that the size of the impedance
patch be sufficiently large. From an extensive numerical study,
it has been approximately determined that this minimum impedance
patch length for the case when the impedance surface supports an
Elliot mode field is n/20 where a for both the TE and
TMz cases defined in (19g) and (20d) respectively. fhis study

5)
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basically indicates how far the edge of the patch has to be to
lie outside the "effective source regions" where the component
of the currents propagating away from the source are usually large
(due to the singularity at the source). It is noted that 7/20
is generally very small compared to t so that the current approxi-
mation employed in SCIM is indeed valTd.

Ii
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CHAPTER IV
RELATION OF RADIATION PATTERN PROPERTIES TO THE PERTINENT

PARAMETERS OF THE PROBLEM

In this chapter the dependence of the radiation patterns on
certain parameters is discussed. It is observed that the number
of lobes in the radiation pattern within the lit region is a function
of the width of the impedance patch and the value of the impedance.
For the TM case with a capacitive impedance patch, this number
is primarify governed by the width of the impedance patch measured
in wavelength, X (where as before X=2T/k). A simple ray picture
of the GTD may be employed to explain why the number of the lobes
in the lit regioni depends primarily on the impedance patch length.
In this picture, the principle source and the edges of the impedance
patch may be considered as three line sources. For the TM case,
these line sources have similar pattern factors. Hence a iimple
array analysis indicates that the number of lobes in the radiation
pattern within the lit region is approximately given by the fol-
lowing table.

Table 2

Width of the impedance Approximate number of
patch (in X) lobes in the TM radi-

ation pattern (lit region)

Less than 0.5 1
0.5-1.5 3
1.5-2.5 5
2.5-3.5 7
3.5-4.5 9

Table 2 is in full agreement with the observed radiation pat-
terns for the TM z-case. Having a peak in the broadside direction
(i.e., *R=0 ) is a characteristic feature of this case.

For the TE case, with an inductive impedance patch, it is
difficult to refate the number of lobes in the lit region to just
the impedance patch length via a simple array analysis because
the pattern factor of the principle source located at the center
of the patch is different from the pattern factors of the equiva-
lent sources of the fields diffracted from the edges at Q and
Q . In general for the TEz-case there may be a peak or a null

the broadside direction (¢R=O ) and the number of lobes increases
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with an increase in the patch length. Smooth radiation patterns
with single lobe can be obtained for the TMz -case with an inductive
surface, and the TE -case with a capacitive surface. It is also
interesting to point out that there are lobes in the deep shadow
region of the radiation pattern. These lobes are created by the
diffraction of the waves that creep around the conducting portion
of the cylinder, and the number of lobes in the deep shadow region
depends on the radius of the cylinder rather than the impedance
patch length. The number of lobes in the shadow region increases
as the radius of the cylinder becomes larger; however, the level
of the fields in that shadow region decreases considerably with
an increase in the cylinder size to the point where the strength
of these lobes is negligible in comparison to the fields in the
lit region.

The reflection coefficient, R can be used as a gauge for

the lobe sizes i.e., the ratio be ween the lobe maxima and minima.
For values of rR I < 0.9 which is the region of interest in this
work, the lobe sze in the lit region reduces as the magnitude
of the reflection coefficient decreases. In other words, antenna
structures with high R leads to a larger break up in the radi-

ation patterns; this asect will be discussed further at the end
of this chapter.

Additional useful information about the radiation pattern
can be obtained if one studies the behavior of the far field pat-
tern of the antenna at specific observation angles; namely 0 =0
and =90 as a function of the value of the surface impedanc5,
and aiso separately as a function of the length of the impedance
patch. oIn Figures 36 through 41 the magnitude of the field u(O)
at * =0 , and likewise u(90) at * =90 are plotted in dB for both
the TE and the TM cases. The m~gnitude of u(90) in dB for the
relevat unperturbid geometries (perfectly conducting cylinders
without any impedance patch) are also included in these plots for
comparison. The plots are normalized such that Iu(O)l for the
unperturbed geometry is taken as zero dB.

A striking conclusion one draws from these data is that,
for the TM case with a capacitive impedance patch, there are very
sharp maximums which are spaced every half electric wavelength,
X 1/2. In such resonances, one may realize up to 15 dB increasSifh the magnitude of the field in the end fire direction ( R=90 )

over that which would exist for the unperturbed geometry. The TE
case with an inductive impedance patch also exhibits an increase Z

in the field strength in the end fire direction compared to that
of the unperturbed geometry. However, the sharp resonances of
the TM case do not appear to be present in the TE case. Some
typicai radiation patterns for the TEz and TMz casis are presented
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Figure 38--The magnitude of the radiation field of a line dipole
source (illustrated in Figure 10) as a function of the
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in Figures 42 through 45 for both the capacitive and the inductive
type of impedances as well as for the case when there is no im-
pedance patch (unperturbed geometry). The plots are normalized
such that their respective maximums are taken as zero dB.

Finally, one may point out that the value of the surface im-
pedance may be different or it may be the same for different ori-
entations of the sources. An example for the first type of surface
may be a thin material of thickness, d, relative permittivity,
E and relative permeability, pr placed on a perfectly conducting
sIrface. From the flat surface geometry, it can be shown that[23],
the equivalent surface impedance for the TE and TMz cases are
given as follows:

Zs =J L Z for TEz-case (41a)

V h 0
Vs

Zs =-j F- Zo for TM -case (41b)

where Vh is the solution of the following pair of equations

-ud.cotan(ud) = LrVhd (42a)

(ud)2 + (Vhd)2 = (Er-l)(kd) 2  (42b)

Similarly, Vs is obtained by solving the following equations simul-
taneously

ud-tan(ud) = erVs d (43a)

ud)2 + (Vsd)2  (er-l)(kd)2  (43b)

A proper combination of d, £ and 1r may be used to build a surface
which can support Elliot type modes for both the TE and TM cases
with desired surface wave propagation constants. S~ch a surface
may be referred to as an "arbitrary polarization surface wave struc-
ture"[24]. In Figure 46, the radiation patterns of a magnetic
line source and a magnetic line dipole source are presented. The
source is assumed to be located on an impedance surface which ap-
pears as a capacitive surface (Z =-j710) for the TM -case and an
inductive surface (Z j200) for the TM -case, so thit the surface
wave propagation conitants associated 6ith both cases are the same

(i.e., 8=B = =1.13k). The radiation patterns for Zs=j710 and
Z =-J200 f~r he TM and TE case, respectively, are also included
iA this figure for omparis6n. The plots are normalized to their
respective peak values.
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Figure 42--Radiation pattern of a magnetic line source on a
perfectly-conducting cylinder which is partly covered

with an impedance surface patch.
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Figure 43--Radiation pattern of a magnetic line source on a
perfectly-conducting cylinder which is partly covered

with an impedance surface patch.
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Figure 44--Radiation pattern of a magnetic line dipole source on a
perfectly-conducting cylinder which is partly covered

with an impedance surface patch.
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Figure 45--Radiation pattern of a magnetic line dipole source on a
perfectly-conducting cylinder which is partly covered
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In Figures 47 through 51, additional radiation patterns of
a magnetic line dipole source (TM -case) are presented for values
of the reflection coefficient, R5  moderatly small. It should
be noted that, these patterns are much smoother than the ones pre-
sented in Chapter III. As indicated earlier, the radiation pat-
terns in Chapter III for the TM case are included in this work
only for comparison purposes. T Z

As indicated earlier, the SCIM can be employed to analyze
the radiation pattern of a source on a general convex cylinder.
In Chapter II, the way to extend the circular cylinder results
to an arbitrary convex cylinder is presented. In Figure 52, this
procedure is used in order to obtain the radiation pattern of a
magnetic line source located on an elliptic cylinder which is covered
with an impedance surface patch.

In conclusion, the present analysis of the radiation from
a line source on an impedance surface patch which partly covers
a perfectly conducting convex cylinder indicates that for impedance
surfaces which support an Elliot type mode, a moderate increase
can be achieved in the radiation intensity near the horizon (c =900)
over that which would exist in the absence of the impedance pach.
In general, the radiation patterns associated with those impedance
surfaces which support the Elliot mode are found to be rather sen-
sitive to changes in the operating frequency. Furthermore, the
increase in the radiation intensity near the horizon is accompanied
by a ripple in the radiation pattern within the lit region. The
addition of a small loss and/or taper to the impedance patch would
decrease this ripple somewhat without seriously degrading the radi-
ation intensity near the horizon. In particular, the field strength
at the edges of the impedance patch can be controlled by a small
loss, this in turn allows one to reduce the ripple size. The loss
can be introduced to the solution as a perturbation to the loss-
less case via an exponential decay factor along the propagation
path on the impedance surface. It is observed that the ripple
size, besides being dependent on other parameters (such as patch
length, radius of the cylinder) is also related to the magnitude
of the reflection coefficient (R 1. As a rough estimate, an average

reduction of 8-2 dB in the ripplP size can be achieved upon re-
ducing the magnitude of the reflection coefficient by 0.2 in the
region 0.5 < JR4J < 0.9; whereas, it is possible to smooth out
the ripples by -2 dB with a decrease in the magnitude of the re-
flection coefficient by 0.2 in the region |R I < 0.5. For the
TM -case, the average ripple size at IR I = b.7 and IR I = 0.9
is z8 dB and 18 dB, respectively. Similarly, for the T z-case,
the average ripple size at IRhl = 0.1 and IRhl = 0.3 is 8 dB and
12 dB, respectively. It may be possible to reduce the reflection
coefficient by tapering the impedance patch without drastically
changing the actual antenna structure, thereby reducing the ripple
size in the radiation pattern within the lit region.
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The present analysis based on the SCIM constitutes an exten-
sion and improvement over the earlier GTD analysis [2] which was
restricted to only those impedance surfaces which support an Elliot
type mode and for which the Elliot mode propagates with negligible
leakage on the curved impedance patch. These limitations of the
GTD solution are absent in the SCIM. While the SCIM in it's present
form appears to be quite accurate in it's fairly broad regions
of validity, further work is recommended to remove some of the
minor restrictions which currently exist (as outlined earlier)
and also make this solution applicable to a wider class of problems
than the one treated here.
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CHAPTER V
CONCLUSIONS

A high frequency solution is developed for predicting the
radiation patterns of sources on a perfectly conducting convex
cylinder which is partly covered by an impedance surface patch.
It is expected that this study will be useful to the design of
on aircraft antenna which can be made to radiate strongly in the
vicinity of the horizon by impedance loading. Such an antenna
structure excited by a crossed slot on an aircraft fuselage can
find applications for satellite communications. Thus, it is im-
portant to develop a theoretical model for this type of an antenna
in order to gain a better understanding of the effect of the im-
pedance loading on its radiation pattern. It is also interesting
to point out that this theoretical model may be useful in the design
of antennas which will radiate strongly only in the broadside di-
rection and shed little energy in the horizon and in the shadow
region of the antenna.

The surface impedance concept is an approximation for certain
types of surfaces, such as thin dielectric layers, corrugated sur-
faces, slightly rough surfaces, and imperfectly conducting surfaces.
The value of this equivalent surface impedance associated with
these surfaces may depend on the orientations of the source. It
is pointed out earlier that the arbitrary polarization surface
wave structure could be an example for this type of impedance sur-
faces.

The analysis of the two dimensional (2-D) problem of the radi-
ation by a magnetic line source (TE: case) and a magnetic line
dipole source (TM case) on a perfetly conducting circular cylinder
partly covered with an impedance surface patch is employed in this
work to simulate the 3-D crossed slot configuration. It is noted
that the radiation pattern of the 3-D configuration would be the
same as the one for the simpler 2-D case in the roll plane con-
taining the slots, provided the effect of the wings are ignored.
The basic approach applied here for the solution of the 2-D prob-
lem is called the surface current integration method (SCIM). The
SCIM is an important extension and generalization of some of the
earlier solutions based on the Geometrical Theory of Diffraction
(GTD) and the hybrid moment method (MM)-GTD technique for analyzing
this problem. The previous GTD solution was restricted to those
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types of impedances which support an Elliot type mode for a given
source orientation; whereas, the SCIM can be used for an arbitrary
uniform impedance surface for both the TE and the TM cases.
The MM-GTD solution obtained previously f6r the TE cise is suf-
ficiently general (includes non-uniform impedance iurfaces) and
is accurate; however, the SCIM leads to a far simpler and more
efficient solution. On the other hand the MM-GTD solution for
the TM case contains integrals which are very difficult to evaluate
numerically; whereas, in the SCIM, the TMz case can be handled
as easily as the TEz case.

In the SCIM, one integrates the equivalent surface current
densities on the impedance patch in conjunction with an accurate,
asymptotic form of the perfectly conducting, convex cylinder Green's
function. The relations between the far field radiation pattern
of the sources and these integrals are obtained via a generalized
reaction theorem as explained in section IIA. The form of the
equivalent surface current densities are found from the canonical
problems of Appendix B. In these canonical problems for the TE
and the TM cases, it is assumed that the cylinder is completel4
covered byZ an impedance surface. The finite length of the impedance
patch is, then, introduced later into the solution by a self-con-
sistent procedure for summing up the fields reflected from the
edges of the patch as presented in section IIB.

The SCIM can also be used in the solution of crossed-slot
antennas located on an arbitrary polarization surface wave struc-
ture as long as the coupling between the TE and TM surface wave
(or Elliot) modes is negligible at the edge of the itructure so
that the performance of each of the antennas can be analyzed in-
dependently as in the ordinary, single valued impedance surface
case and these results can then be superimposed to yield the total
radiation pattern.

The effect of the different parameters on the radiation pat-
tern for both the TMz and the TE z cases can be summarized as follows:

TM z Case:

1) The capacitive impedance surface (i.e., Zs=-jjx [ where

x is a real number) supports an Elliot mode field for this polari-
zAtion; hence, it is possible for his case to guide more energy
into the end fire direction (4 =90 ) i.e., near the horizon. It
is observed for the Elliot modg case that the antenna patterns
become increasingly frequency sensitive for those values of Z
=-JxcJ for which Jxcl is small.
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2) The Elliot mode reflection coefficient, R approaches
unity as the capacitive impedance surface tends toSthe perfectly
conducting case (i.e., as Ix I becomes small). Antenna structures
with high reflection coefficients generate badly broken radiation
patterns with deep ripples.

3) An inductive impedance surface does not support an Elliot
mode, hence the field strength in the vicinity of the horizon is
much lower than that obtained with a capacitive impedance surface.

4) In the case of the capacitive impedance patch, the number
of lobes within the lit region increases as the width of the patch
increases.

5) Inductive impedance patches generate smooth radiation
patterns.

TEz Case:

1) The inductive impedance surface (Z =j~xL) supports an
Elliot mode field for this polarization. Ah increase in the field
strength near the horizon is possible for this type of impedance.

2) The Elliot mode reflection coefficient, R increases as
the value of the inductive impedance increases. Hnce, inductive
impedance surfaces with small IXLI lead to smooth radiation patterns.

3) The capacitive impedance surface does not support an Elliot
mode, hence the field strength in the endfire (horizon) direction
is much lower than that obtained with an inductive impedance surface.

4) In the case of the inductive impedance patch, the number
of lobes within the lit region increases as the width of the patch
increases.

5) Capacitive impedance patches generate smooth radiation
patterns.
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APPENDIX A
AN ANALYSIS OF THE RADIATION FROM LINE SOURCES ON AN

INFINITE PLANAR IMPEDANCE SURFACE

In this appendix, the radiation from line sources on an infi-
nite planar impedance surface is analyzed. The geometrical config-
uration of the problem is illustrated in Figure 53. Two different
source orientations are discussed. The first of these is for the
case of a z-directed magnetic line source excitation, which will
henceforth be referred to as the TE case; this case is treated
in Section I below. Likewise, the freatment of the case of an x-
directed magnetic line dipole source type excitation, which is hence-
forth designated as the TMZ case, is dealt with subsequently in
Section II.

+y MAGNETIC LINE SOURCE

(o,) IxQ)
_ _ _i_ X

IMPEDANCE SURFACE

(a) TEz - CASE

)Y MAGNETIC LINE DIPOLE SOURCE

\- _* .. X

IMPEDANCE SURFACE

(b) TMz -CASE
Figure 53--Geometry of the canonical problem of a line source

on an infinite, planar impedance surface.
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I. TEZ or Magnetic Line Source Excitation Case

by The magnetic source density for this polarization is denoted

by M; it is given by

= i M 6(x) 6(y) (A-I)

where M is the strength of the source and is assumed known. The
magnetic field generated by such a source has only a z-component
and it will be denoted by H . H satisfies the reduced, inhomo-
geneous wave equation, and the f6 1llowing boundary conditions:

(V+k2 )Hz = JkY 0M6(x)6(y) ; y O, Ixl<- (A-2)

ZT+ ahH 0 at y = 0 (A-3)

where Zs

h -jk I (A-4)
0

For the problem of interest, ci is chosen to be a real number (i.e.,

Re Z =0); however, the method of solution is applicable to complex
a a well. The impedance boundary condition given in (A-3) can
aymptotically be obtained from the more general form of the bound-
ary condition given in (5a) with the aid of the Maxwell's equations.
Z =1/Y is he surface impedance, Z = Y is the free space im-
pedance Vt is the two dimensional Eapla8 jay operator. Also, Hzsatisfies the radiation condition for an e w time dependence.

In the process of solving (A-2) one defines a two-dimensionalGreen's function, G(x,ylx',y') such that

H z(x,y) = -jkYoM Gh(x,yIO,O). (A-5)

h
Gh(x,ylx',y ') is the solution of (A-2) for a -6(x-x')6(y-y') type
source term on the right. It also satisfies (A-3) and the radi-
ation condition. Using the procedure for constructing higher dimen-
sional Green's function as in[25], one obtains,

j Jfkr: yJkxIl

1 e kKykJx
Gh(xYlOO) =I e dkx, (A-6)

k4k + jh
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where E is a positive but otherwise arbitrarily small number. The
proper kx sheet associated with the integrand of (A-6) is one for

which Im&7"k<O with branch points at ±k. The integrand also has

poles located at k n = ±r on the proper sheet for Im Z5>O. These
properties of (A-3 are illuqtrated in Figure 54.

Im

k- kr_7BANC'CUTSXP _ ___ k Itp R+ k

Tp% - I-Rek

CON UR OF E POLE

INTEGRATION LOCATION

Figure 54--Contour of integration in the complex kx-plane.

The expression in (A-6) can also be represented as a perturbation
if the fields on the perfectly conducting surface as follows:

Gh Gh + Gh (A-7)c p

where Gh is the green's function for the perfectly conducting ground
plane; it is given by

Gh I -J e jkx xl

Gc = I e dkx -- H(2) (kj ) (A-8)

Gh is the perturbation Green's function and has the following form
p
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Gh =  01 e dk (A-9)

G p - c j L . . J E k 2 k 2  ix2 k ~ i h

In both (A-8) and (A-9), the observation point is brought on
to the impedance surface (i.e., y=O).

The two alternative expressions for the Green's function given
by (A-6) and (A-7) may be approximated asymptotically. The asymp-
totic evaluation of (A-6) is discussed below in part I-a and that
of (A-7) is discussed in part I-b.

a. Saddle Point Approximation

In the asymptotic evaluation of (A-6), it is convenient to
begin by introducing the followino polar transformations:

i
kx = k cosn ; dkx = -k sinn dn (A-10)

and

x = pcos ; y = psin, (A-11)

The transfRrmation in (A-11) is shown in Figure 55. The Green's
function G of (A-6) is now expressed in the complex n plane as

G - f fFh(n)e dn (A-12)
27rj c

where

Fh(n) - sin n (A-13)
sinn+Jh k-

and

f(n) -j cos(n-q); Q= kp. (A-14a);

(A-14b)

Q is the large parameter in this asymptotic development. The contour
of integration c is indicated in Figure 56.

fp and rp are the poles of (A-6) in the complex q plane.n1 n2

By setting the denominator of (A-13) to zero, one can easily show
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Figure 55--Polar and rectangular coordinate systems.
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Figure 56--Contour of integration in the complex nl-plane.
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that r , =-j sinh1 (CEh/k) and np =1T+j sinh1 (ah/k). The saddle

point is denoted by ni and it is the solution of f'(q)=0. It
can be shown that ni = for (0q<1<T). For the special case when
the observation poi~t is on the impedance surface (i.e., 4e0),

Using the results of Felsen and Marcuvitz[26] one can obtain
an asymptotic solution for (A-6) as follows

G h Rc P ef (Y1[j 2aJ-e-2b 
2 Q(;jbj-Q) + ,ia] (A-15)

Im b Z 0 , S~

where - i (-
R i [(n-n )Fh )e a~ li (n )Fh(n)] (A-15a)

b =f(n)f(i )to for Im b< A-5j

"0 2
Qy 2 - x T erfc(y) (A-15c)

y

where erfc is the complementary error function. Alternatively, sub-
stituting (A-13) and (A-14) into (A-15), with q5=O, yields

Gh J"h J3hx -jkx[+ ja h -kxbh
Ge E: + eh(j k~

+1 ir'h 1.Im b >0 (A-16)
2ri j ix hbhi

where

bh 'h ~h + 1) 2 =1k2 + cxt (A-16a)
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Eh ~ for (a > 0) or (Tm bh~) (A-16b)

b. Asymptotic Evaluation of the Perturbation Green's
Function Representation

The first term in (A-7) was readily evaluated in (A-8) as the
Green's function for the half-space with a magnetic line source
located at the coordinate origin. The effect of th impedance is
represented by the perturbation Green's function, G which is given
in (A-9). As indicated earlier, the integrand in (9-9) has poles
for positive values of a In the process of evaluating (A-9),
one defines a new quanti~y as follows

J E -JkxiXi
Gh- e

G -Jah2 - __jr dk (A-17)

-cjE 2_2-k[J 2  o-ifk -k~x j k - h

where (Eh - lhi

Through a simple manipulation, (A-9) becomes

h I cjE: -Jkxil xlGh = -2j h I h f e dk x + Gh (A-18)

Ja~~j £h*L~ojE:(k 2 +ch)-kx k

h x

The first term in RHS of (A-I8) can be calculated by enclosing
the contour in the lower half complex k -plane and evaluating the
residues enclosed. Hence, (A-18) becomes,

Gh _ Jh -jhl x  + Gh (A-19)p_ B e eh + p(-9

The integrand in Gh has no poles on the proper sheet, therefore
it can be rewritten as Follows:

Gh = Ho I I(kj'+x ) e cT (A-20)Gp o O

where the relations
_j[ k2_k + ja

fe x h i
f e dT
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and _JkIx X I-jT k2 k2

(k 2 +x2 ) dk e0 =t f  dx
0H()kI+ r-k 2

x

are employed [26] in the integrand of (A-17) to arrive at (A-20).

For large values of - and x, (A-20) can be evaluated by the
large argument approximatin for the Hankel function as

Gh~oh -j(kx I,+ 1 2] _ _E) + c 'r1

h 2i
ph 2--x e dr, (A-21)

Next, introducing a new variable z = IJ + f , one can
show that f2t

2

- J-Jkixl(1 + C  ,Jh h-

P k e Q(J k Ix); Ix+c- (A-22)

For small values of ch, the htegral in (A-20) is slowly conver-

gent; however, one could overcome this difficulty by expanding Gh in
a power series of cc as follows. P

Gh' "- j i 00-jc dk e- Jkxl xI

Gh 3 . 2j( x [(k2+)-k x

h h-- (A-23)
2T_k 2 2 2)+,fk: (k -kA

Evaluating the first term in (A-23) by the calculus of residues, and
expanding the second term in powers of cth yields
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4~hI Lx2h  o.je -JkxlXl
Gh= h e-JhIxI - Ja4edc
GhP -j eTG e 7,7 .jc dkxe

a 2 a41
S +  +  (A-24)

(k -kx  (k -kx) (k x

or 2r 
- 2(p-1)

h- = h -'x _hOXI % pl HP (kjxI)
G p 2h e 2 j k =  1 3 ...2 p -1( A "2

(A-25)

In obtaining (A-25) from (A-24), the relation

1 ®D-mE e-Jkx'x 1xljQ

1 ---kxI =d 1 3. 2 (klxp; p=1,2,3,...
~ 3 f.

je~k kx fk:kx'(A-26)

is used.

A closed form expression for (A-25) may be obtained for large

values of x. To this end, one uses the asymptotic approximation
for the Hankel function and rearranges the resulting series in (A-
25) which yields

/ 2 2-jlx +j klxl

Gh- J= h eJhlX l+ W kl( + 2k 2k2  2

Gp -- .1eW
0 n Jn+S3,(2n+1) j[:[ ] x)2n+ (A-27a)
n=O 1 3..(2o

or2

Gh- = e lJhlXl Jih e-klx( + kerf-(
P -rh + j - )

(A-27b)
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Since (A-27b) is derived for small values of a one can approxi-
mate ~ k for the ampli~ude terms (i.e., when B YS in the denomi-
nator), and by B k(1+a /2k ) for the phase ters (i.e., when
it is in the exp~nent). his approximation yields

:: h" jah -jklxl 1 + 2)~ (-8

G --- -e + 2kj Q Y[ kff ) (A-28): p kj' e Q (j[L

h- The above analysis shows that regardless of the value of aG has the same form as given by (A-22) or (A-28), for large vqlues
OF lxi.

Substituting (A-27) or (A-28) into (A-19) and substituting
this result and (A-8) into (A-7) yields

Gh  Jah e-jBhIx l  Jah e-Jkjx Q ( h
- O h eh + kj-

+ 1 H(2) (klxl (A-29)

where

ShFJ (A-29a)

As indicated earlier, (A-29) is valid for both small and large
values of ah, when lxi is large. It can easily be shown that (A-
29) goes to the saddle point approximation of (A-16) for small values
of a and large values of lxi. On the other hand, for small values
of JPJ, the Hankel function in (A-29) will dominate and provide
an adequate description of the current near the source. Thus Eq-
uation (A-29) is an asymptotic approximation of the Green's function
which also remains valid in the vicinity of the source for all values
of a ; whereas, (A-16) is an asymptotic approximation of the Green's
function for large values of x.

II. TMz or Magnetic Line Dipole Source Excitation Case

The-magnetic source density for this polarization is denoted
by' d, and it is given by

Md = R Md 6(x)6(y) (A-30)
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where M is the strength of the source which is assumed known.
The tangential magnetic field generated by such a source has only
X-comiponent and it will bl denoted by H x. H can be obtained from
the only electric field E generated by an electric line source
I = 2 I8(x-x')61y-y'). Aere, I is the known strength of the electric
line source. E satisfies (A-2) and (A-3) with the exception that
YM is replaced by Z I and ah is replaced by as respectively, where

c = -jk Ys (A-31)

0

El also satisfies the radiation condition for an ejWt time depend-
e~ce. With above changes, (A-5) becomes

El(x',y') = -JkZoIGS(x',y'ix,y) (A-32)

Gs corresponds to Gh of the TE z-case, and using the procedure of[25),
one can show that

=-jce" jJ-kT2  J y  A -y 7- k (Y'+Y)

GS(x,y'lx,y) =1 e +R e

-,jk 'o-X-- J K

e dkx; y'>y (A-33)

where Rs= (1k2_k -JOs)(.x+ j) '1

The case for y>y' can be obtained from (A-33) by interchanging y
and y'. It is no surprise that (A-6) is the special case of fA-
33) when y=O and a_ is replaced by i. The magnetic field, M' x

generated by T can be found from VxESz=--Jw T'. The electric field,
E 2 generated by I of (A-30) can 06w be f8und from the reciprocity
theorem which yieldg I 2.E - -M xA'. Making use of the other

Maxwell's curl equation, T - -(Jpo)'[vxf+Rd) it can be shown that

Hx (x,y) = -JkYoMd GS(x,yJO,O) (A-34)

where 2 2 - jk

=-(co-je JS x e dkx

(A-35)
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The contour of integration in (A-35) and the branch cuts in
the integrand (A-35) are the samg as i _gre 54. The integrand
in (A-35) has poles located at k- = J"k-a on the proper sheet
for the positive values of as". KP

The expression in (A-35) can also be represented as a pertur-
bation of the fields on the perfectly conducting plane surface as
follows:

Gs = Gs + G s (A-36)

where GS is the TM type Green's function for the perfectly con-
ducting ground plage; it is given by

s 1 k'21 iJj 22e~kxX' 1 H(2 ) ( k l x l )

__i -_j 2_ 2 jkxJx 1 1~~kII
Gc = j T2  kke dkx =

2j k x (A-37)

Gs is the perturbation Green's function, and it has the following
fBrm:

aG-JE k2-k2  -JkxlX

G p Tj f- k2( + s ) e dkx  (A-38)

In both (A-37) and (A-38), the observation point is brought on to
the impedance surface (i.e., y=O). The integral in (A-35) will
next be asymptotically approximated via the saddle point method
in pirt II-(a); likewise, the perturbation integral corresponding
to G in (A-38) will be asymptotically approximated in part II-(b).

p
a. Saddle Point Approximation

Equation (A-35) will be asymptotically evaluated in a manner
similar to that in part I-a of this appendix.

Substituting the transformations (A-10) and (A-11) into (A-

35) yields

Gs = . 1 f Fs() e C (A-39)

where n s sin2n 
(A-40)

sinn+j c S

and f(n) is the same as in (A-14).
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Figures 55 and 56 are also the same for TM case with theIxcep-
tion that the poles of (A-40) are now located af np -J-sinh (a S k)
and ip 2= ir+j sinh' (as /k). Changing the susrito superscriptS

'~h' to 'Is" in(A-15) through (A-15c), one arrives at an asymptotic
representation of G . The final result has the following form

Jca I -JO51x1 xiz--Jkxb 2

Gs - -e C+ [2kjj 's- Q (Tjbs/Fi j e s+
k285  eikI OO T

X k2 Ob j Im b 0 (A-41)SIX 5s
where

b5  r-2~1) , ~J 2 cz (-42a)

=f{lJ for (osZ5 O) or (Im b5 O< (A-4b

b. Asymptotic Evaluation of the Perturbation
Green's Function Representation

The alternative representation in (A-36) will now be evaluated.
It is already shown in (A-37) that G is the Green's function for
the perfectly conducting plane surf a~e with an XA-directed magnetic
line dipole source located at t e coordinate region. The impedance
effect is then represented by GY which is given in (A-38). In the
process of evaluating (A-38), oRe first separates the pole contri-
bution as follows.

G5  1 aco-je k______ -ikxIx

Gs= - 1 ~ x+c~ e dk-
u-j N7 f 2s 2_k2 x~d

~~jc k - (A-43)J
L s x ix

where a- = -a 1. The last integral in (A-43) can be integrated
via theScalculas of residues.
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Next, incorporating the following relationships

+ - k2 e (A-44a)

and

=1 (A-44b)

jk2+Jc fk- ~ kjk2-k [fk-k,+j 5

into the first integral of (A-43) yields

GpS - I + d21 2 ]  H '(kixi) + 7J% f je

e -jkxlX dk - j % e-J slx l

jk -k2 [J_-x +j a-] ~
+ fa 6(klxl>% (A-45)

Comparison of (A-17) with the term in the curly bracket of
(A-45) shows that they are the same with the exception that in the
latter - is replaced by o. Hence the evaluation of (A-17) leading
to the risult in (A-22) is equally valid for the integral in (A-
45) as long as all of the superscripts and subscripts in part I-
b are replaced by 'Is" in the present development. With the above
commeyts in mind, one can now readily write an asymptotic expression
for Gp by substituting (A-22) or (A-28) into (A-45).

GS - 1 + H 0)(kjxj))

Gp C d k Ix Il]&r Ix1 kI &2 j3 j X

"cs "JBslxJ_- xlQ(Jbsk/xI) e
kJ 2 S

2%a+ -f 6(klIx1) s (A-46)

where

I(A-46a)
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The term involving the Q function in (A-46) can be written as follows

J s eJkx Q(jbsJ7TI])e'' s

where z = JbFJJ. The term inside the brackets is recognized
as the large argument approximation of the Hankel function. Hence
one can conjecture a different asymptotic form for (A-46) as follows

Gp -1 + H-2)(klxl) Ho (kIxl2z eZ2Q(z

j -JBsIXI 2a
- e Cs +- 6(klxl)cs. (A-48)

ask2

This conjecture can be justified if one notes that as the admit-

tance tends to infinity corresponding to the case of a perfectly

conducting2ground plane then 2z ez Q(z), tends to unity (i.e.,

lim2z ez Q(z) = 1) for x#O. Hence, the first two terms in (A-
s

48) cancel each other as a .-. The addition of a small loss in
the medium for (y > 0, jxl<w7 nullifies the surface wave as -,
thereby resulting in a zero contribution from G term to G
Hence, in the limit as the impedance surface go~s to the perfectly
conducting ground plane, Gs becomes:

1s  1 4H2)(klxI)
lSm = 1. (A-49)

I xl o

which is the desired result for TMz case.

Finally substituting (A-37) and (A-48) into (A-36) yields:
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jal -jaIxI 2ai 1 H(2)(klxfl
Gs - C + . 6(klxI)c +J 1 1-~j

k B (' d2 1x {, H 2) (kix)*{ 2z ez Q(zjj

(A-50)

where as before z =jgbIlxi and b is defined in (A-46a). The first
term in (A-50) corresp~nds to the iurf ace wave field.

98



APPENDIX B
AN ANALYSIS OF THE RADIATION FROM LINE SOURCES ON A CIRCULAR

CYLINDER COMPLETELY COVERED WITH AN IMPEDANCE SURFACE

In this appendix, the radiation from line sources on a circular
cylinder covered with an impedance surface is analyzed. The geo-
metrical configuration of the problem is illustrated in Figure 4.

Two different source orientations are discussed. The first
of these is for the case of a z-directed magnetic line source ex-
citation which is illustrated in Figure 4; this case will be re-
ferred to as the TE case and it is treated first in Section I below.
The second source o ientation refers to a *'-directed magnetic line
dipole source excitation case as shown in Figure 4. Henceforth,
the second case will be designated as the TMz case and it will be
dealt with subsequently in Section II.

I. TEz or Magnetic Line Source Excitation Case

The magnetic source density for this polarization is denoted
by R and is given by

= M 6(pa)6(€) (B-1)P

where M is the known strength of the source and a is the radius
of the cyliqder. The magnetic field generated by such a source
has only a z-component and it will be denoted by H . H satisfies
the reduced, inhomogeneous wave equation, and the follo~ing boundary
conditions:

p>a

(V2+ k2)Hz = jkYo M 6(p-a)6(p) ; <<21T (B-2)

and

z+ = 0 atP =a (B-3)
ap

where i given in (A-4). Also H_ satisfies the radiation condition
for an time dependence. For s6lving (B-2) one defines a two-
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dimensional Green's function, gh(p, pI' *') such that

H z -JRYoM 6h(p,$Ia,O) (B-4)

Gh(p, Jp', ') is the solution of (B-2) with -6(p-p')6(¢-')/p

the source term on the RHS. It also satisfies (B-3) and the ra-
diation condition. It can be shown that the Green's function has
the following form [26]:

h " - 1 d )(kp') QhH V2(ka) H

')( f -Lj -V hH-2)'(ka) v

(2) k p) cos n-(B-5)
sin \m

where Qh T +I-

One may write

cosv(-j' 01=Js [e-Jv4'_' I + e- j vO- e'Jv(2 7) (B-6)

where *=2 -t€-€'I. Physically, the above series corresponds to
multiple encirclements of the field around the cylinder in the azi-
muthal propagation representation for Green's function of (B-5).
Since one is interested in applying the results of the present anal-
ysis to perfectly conducting cylinders with an impedance surface
patch, the effect of these multiple encirclements will be neglected
with the exception of the ray which will travel the shortest dis-
tance between the source and the observation points, i.e.,

(cosv(7-1 /si Nr will be replaced by je'JvI4'' in (B-5),
yielding

j-Jc [HI )  QhH I) (ka)

G-JE QhH( 2 )Cka)

From here on, Gh in (B-7) will be referred to as the Green's func-
tion and it will be used in place of V (for example Equation (B-
4) now will read Hz(p,O) = -jkY 0M Gh(P,01a,O)). One notes that
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the contributions from higher order encircliments to G in (B-5)
can be found simply by replacing l-€'- in G of (B-7) with '
+2,g or with (2w-I-'I)+27rq. and summing them up over Z as indicated
by (B-6).

The expression in (B-7) can be represented as a perturbation
of the fields on the perfectly conducting cylindrical surface as
follows:

Gh = Gh + Gh (B-8)G c p

where Gh is the Green's function for the magnetic line source in
(B-1) when it is placed on a perfectly conducting cylinder; it is
obtained from (B-7) upon setting ah = 0. Thus,

a.jc ( H (2) (ka)e~V¢

G _- _ d( V e-V! . (B-9)GcH (2 ) '(ka)

V

Following an analysis which is based on some earlier work by
Hasserjian and Ishimaru[19], one obtains the following approximation
for (B-9):

h ~1 +

c2 ~H7(kaIIj)[ 1-0+

+7J-r 92+ (B-10)

1/3

Gh is the perturbation Green's function and it is given asfollow :

Gh = i% -1-jf d aaPV(ka;ah) P (ka;O) e&0 (B-11)

where

H (2 ) (ka)

H(; (ka) + h H 2 )(ka)  (-12)
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The prime over the Hankel function in (B-12) indicates differen-
tiation with respect to the argument. In both (B-9) and (B-il),
the observation point is brought on to the surface of the cylinder

(i.e., p=a).

In the process of evaluating Gh in (B-11), one encounters the
problem of expanding the Hankel function in an asymptotic series
for the different ranges of the parameters involved. In the im-
mediate neighborhood of the source; that is, when kajlI is small,
the main contribution to the intejral in (B-11) comes from the
values of v which satisifes the inequality Iv-ka>O(m) where 2m (=

ka) is taken as the large parameter. The Debye asymptotic expansion
is the most suitable representation for the Hankel function for
small values of kaj41. If ka1e1 is moderately small then one em-
ploys the Watson approximation for the Hankel function. The Watson
approximation corresponds to the values of v such that 1v-kal<O(m).

A third representation referred to as the creeping wave rep-
resentation for the fields can be found by evaluating (B-8) via
the calculus of residues. This creeping wave solution is rapidly
convergent for large values of kalMd. One points out that the Debye
approximation presented below goes to the Watson approximation for
v-O(ka), and that the results obtained from the Watson approximation
for the Green's function blend with the creeping wave representation
for moderately large values of ka141.

Equation (8-11) will be evaluated firstly by the method of
Debye approximation in part la of this appendix. The Watson approxi-
mation and the creeping wave representations of (B-Il) will be
carried out subsequently in parts (Ib) and (Ic) respectively.

a. Debye Approximation

This asymptotic expansion is valid for large values of the
argument, ka, and the order, v, of the Hankel function such that
Iv-kal>O(m). Then, it can be shown that [27,28]

-jv(tanni-n) - J T

H(2) (ka) -j e1t - -- + 0 (B-13a)

f! vtan i

and

sin 2 -jv(tann-n) +j v i - i+ 1
H 2)(ka) ~ -j e 1 +0

(B-13b)
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where is a fixed positive number and cos n~ v/ka. Also, u1
and v, are given as

=, (3 cotn + 5cotn ; v= (9 cotn + 7 cotn)

(B-14)

After substituting (8-13) into (B-12) and rearranging the terms, one
arrives as

P V(ka;cgh) 
a

sin"+j v~ 1lsinr+jchk ul 1 (10
1-siflr+ja hk- V

(8-15 a)

Carrying out the division in (B-15) and retaining only the terms
up to and including terms of order 1/v with respect to unity and
using (8-14) yields,

11 + 1 COST, + 1
V sinn2sin rl s infl+ja h k-

(B-15b)

Substituting (B-15b) into (B-11) and performing the indicated multi-
plication between P V(ka;ah and Pvk;)leads to:

Gh G h + G h(1 +o 1' (8-16)
p PO P, (R-) + [(k a72)

where

G h 1 co-je d& e-j~aII (B-17)

and
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Ph k j j a h 1 2 '~(
Gf d+ j3% ej~aII.

(B-18)

A change of variable, (i.e., { v/a) has been introduced in
the above equations, and it is recongized that cos n = v/ka and

sinn =fJk-e/k. Comparison of (B-17) and (A-9) reveals that these
two equations are indeed identical with the exception that the
distance, )xj between the source and the observation point on the
flat surface in (A-9) is now being replaced by the arc length aMI
on the surface of the cylinder. Hence, the same argument presented
in Appendix I can also be used here for (B-17); this results in

G h h e -JhCaJ -h e k ri Q(JbJV )e a hPO h= T ~

(B-19)

where, as before

4 jh =Jk2+c ; Bh + -aj; - -lhI (B-19a)

and

h : {=lfor 4h<O (B-19b)

In order to evaluate Gh , one rewrites (B-18) as follows:

Gh - - . d_ jF4I 1 2 2
P1  -~ _~_~E (k 2 _ 2 ) 2  ah (k 2 _ 2 )

1 lahd) 1- ] (B-20)

The first two terms in (B-20) can be evaluated using calculus og
residues. The last term in (B-20) can be written in terms of G
of (B-17), leading to PO
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Gh k.i [-Jkalol 1;k'p '01/ d P~
G ~ 4 e -7 11 + +2 (1-ch )i

(8-21)

The explicit form of the derivative term in (B-2) can be found by
simply differentiating (B-19) with respect to ah' resulting in

+ Jia 10 e-jka j0 q(j~hja-l)¢ e ' a % (B-22)
kji

d
In the process of deriving (B-22) one uses, the fact that-- Q(ibh

Ikajj) = t .J. ek h l, which is the consequence of the 2

definition of the Q function (see (A-15c)), and T- erfc(z) = - z

It may also be pointed out that ah/ah = ;1; ah<O.

b. Watson Approximation

The Watson approximation is valid for the large values of the
argument, ka and the order, v of the Hankel functions such that Iv-
kal-<O(m). For such values of v, it can be shown that [28]

H(2)(ka) (B-23a)~ m w2 ( cy(-2a

and

(2).(ka) wj() (B-23b)

where
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V-ka m 4ka)/ 3  (B-23c)

w2()=J[ia -j Ai(a)] ,wja) =Jiiphi'(c) -j Ai'(a)]

(B-23d)

Ai(a) and Bi(a) are the Miller type Airy functions. Substituting
(B-23a,b) into (B-12) yields

P v(ka; on) - 1(B-24)

mn *2 (a) F

where * (a) is the ratio of YOc) to w2 (a) and has the following
asympto~ic form

w~(a+ 1 1 (8-25)

Substituting (B-25) into (B-24), expanding (B-24), and retaining
only the terms of order 1/ka leads to

P (ka;xh)1 - + 1 1
1 h) 1 2r1 'fh

m- ~(m- I-a) 2mI- 1 F- a

1- 7) (8-26)

Substituting (B-26) into (B-11) and keeping only the terms up to

the order of ((kaj2) leads to

Gh G h + G h(L 1 (B-27)
p p p kkaI [a
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where 1

J% e ika IO j a lI*I eB-a s
G h ~o J"' ' e ' -" 2rj j d s ( + j . k .) ( 8 -2 8 )

and

Ghe 1 jkaI.I J d 2Fs + J hJJk-  ef a1 Is

Pf -Jf ds s 2 (L-s+j2 hk'a)2

(B-29)

In the process of obtaining (B-28) and (B-29) one employs a
change of variable s -2(. - k). In the s domain, (B-23c) becomes

4ma -f
o s, and naturally, m =J .

Equations (8-28) and (B-29) are in the form of an inverse
Laplace transformation. Equation (8-28) can be readily evaluated
using standard Laplace transformation tables [28]:

G G h - - JkaM erfc (j [!Jah] k~a e kaJCJ EIh/jfk]2
PO L2' kJ

(3-30)

Since erfc(-z) = 2-erfc(z) and z = j f Ij 11-, one can re-
write (8-30) as follows Lfik

Gh =_ - e"JkaJ* l  h - Jh-h e-jkaj*j Q(J- ea ')e kahiT 2h

(B-30b)

Again, in (B-30b) bh -- and = -I%1.

Comparing (B-19) with (8-30b) reveals that they both are the
same with the exception that the surface wave term in (B-19) is
more accurate than the one in (B-30b). It can be shown that (B-
30b) is the limiting case of (B-19) for s~all impedances (i.e.,

oh is small, Oh - k). The second term, G; in (B-27) can easily

be calculated from (B-29), if one recognizis that (B-29) can be
rewritten as follows:
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Gh . . e- ik.... . . ..... . ..... .. ..... . ... .. .. . ..h.Gp1  f dsi J +(1_'mh hh

1 k ] (B-31)• r (js+j rJ %-h

Equation (B-31) can now be evaluated with the aid of a Laplace
transformation table, yielding

Gh IV -jkaI~j(IkjfI 2 P0

(B-32)

In obtaining (B-32) from (B-31), the definition of Gh in (B-30)

is also used. The explicit form of the derivative in°(B-21) can
be found by simply differentiating (B-30b) with respect to ah

(kG h 'I J2a
ad P o Ja e-i k _____e_ &kaII

% ~ 1 [= . ~-j~Lka I 10aI,2

Q(Jh ka )e I m  h 0 (B-33)

Comparison of (8-21) and (B-22) with (B-32) and (8-33) reveals
that the latter pair is the special case of the former pair for
small impedances, and larger arc lengths, aIeI. It can be seen
that in the limit as atl becomes large and % becomes small, which
is the region where the Watson approximation fs valid, the Debye
approximation goes to the Watson approximation smoothly; whereas,
one can not obtain the Debye approximation from the Watson approxi-
mation for small values of aII which is the region where Debye
approximation is valid. Hence, one concludes that the represen-
tation given in part (Ia) is superior to the one given in part (Ib)
of this appendix.

c. Creeping Wave Formulation

Even though one can directly obtain the creeping wave modal
representation for (B-8), it is more convenient for later purposes
to use (8-7) with p-p'-a and *'-0 (i.e., both the source point and
the observation point are located on the surface of the impedance
cylinder and arc length is measured from the source point). This
specialized form of (8-7) is given as follows:
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( ) H(2)(ka) e ~

Gh 1 d-c d()k ejVIPI (B-34)
H(2 '(ka) + F H( )(ka)

V

As mentioned earlier, the creeping wave modal representation
is valid for large values of arc length, al* and it is obtained
by evaluating (B-34) via the calculus of residues. To this end,
one would use the Watson approximation for the Hankel functions
in (8-34), leading to

Gh =e'jkalfl -Je w2(°) -km¢G da • (B-35)

m -."-Jc wi(a)-ahmk' w2(o)

where the use of (B-23) is made in the process going from (8-34) to
(B-35). Thehlocation of the poles of the integrand in (B-35) will be
denoted by op and they are the solutions of

wi(a) - ahmk 1 w2 (a) 0 O. (B-36)

The solutioR of (8-36) and the extensive numerical tables of the
values of a. for different ranges of the parameter (hm) are given
elsewhere RB], and they will not be included here for the sake of
brevity. From the calculus of residues, it can be shown that

-hjah MW-

Gh 2,h eI )kaI2t p (8-37)
p=OO+(Ohm

where (B-36) and the differential equation for the Airy function
(i.e., w"(a)- w (a)=O) ishused in the process of obtaining (B-37).
One hotei that ihe root a (i.e., p=O case) is chosen such that
it corresponds tohthe surFace wave for the inductive surface; where-
as, there is no ao root for the capacitive surface and the summation
in (B-37), for thts later case, starts from p=l (rather than p=O).

II. TMz or Magnetic Line Dipole Source Excitation Case

_ The magnetic source density for the TMz case is denoted by
Md, and it is given by
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a) 8((B-38)

where M is the strength of the source. The tangential magnetic
field ggnerated by such a source has only a -c9snponent and it will
be denoted by H. H can be obtained from the z directed electric

field E z generated by an electric line source -Z ~oaa*

where I is the strenth of the line source. Ezsatisfies (B-2) and
(B-3) with the exception that Y M is repacdI y ZIadc ssb
stituted by a where a is gi VIR in (A-31). E als8 satisf~es the
radiation conaition foP an e wtime dependen~e.

With above changes, (B-4) becomes

EI(, )=-JkZ I G5(P,*'IPO) (8-39)

Using the procedure of [26] , one can show that

GspIjp, dv{H(,')(kp') - 25 ~ 1 (a H(2(kpl)

G5p,'p,) Q H( 2)(ka)

where Q= + +
a[FP] T

Actually the term cosv(w-I.-*IJ)/sinvff of (B-6) is present
in the construction of the complete cylinder Green's function for

the TM, case. However, only the term j ejiVIO4'I on the right
hand s de of (B-6) is of interest in this analysis; this is the
only term which is included in (8-40) just as in (B-7). The case
for p'>p can be obtaiygd from (8-40) by interchanging p and Y,
The ma~netic field, H generated by I can be found from VxE z=-
-Jw R . The electric field, E z generated by M of (A-181 Ean
now Be found from reciprocity theorem via the equation IzeE=-M d

$1as follows

Em(MJI,0o) a MdaG e(p, ,Ip,0) p>p, (8-41a)
zd

Em(P,,Ip.O) aMdk G e(p.,,,O) P '>P (B-41b)
zd
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s v

and MJ CQ H l ( a
Ge(,,lpI.O) f j dv[1Htl)(kp) -5HS, (kv

-ac~ C v Q H(2)(ka)

EutosH(2) (kp)]H52 .kO;)evI:I; p->po (8-42b)

and P'na, with the aid of the following wronskin relationship

((ka)H~l)'(ka) - H(2)'(ka)H( 1 )(ka) it( -3

yielding: GjeH(2)' ka

21Q) -~ f CcJ a)QH(2) eiVa)

*lim(p=a+c;f)

Q1 (p'a;O)(84a

and

Ge(QI)9 H (2 1 -cH 2 (ka)

-.WjcQ H()(a)

=(pI'a;f)

Q, lim (pl-a+c;O)(-4b
e*0



Making use of the other Maxwell's curl equation, 1TI=-(jwpo)'l

[vx+1'Rjd, it can be shown that

H (p,,) = -jkY MdGS(p,€j a,O) (B-45)

where

vC H (k = dk)F Hv (k

e'JvII; p>a (B-46)

the prime over the Hankel function on (8-46) indicates derivative
with respect to the argument. Equation (8-46) is specialized to
the case where the source point is on the surface of the cylinder
such that p'=a and *'=0 and the observation point is exterior of
the cylinder (i.e., p>p'=a).

The expression in (B-46) can be represented as a perturbation
of the fields on the perfectly conducting cylindrical surface as
follows:

Gs =Gs s (8-47)
c  p

where Gs is the Green's function for the magnetic line dipole source
of (8-31) when this source is placed on a perfectly conducting cylin-
der. G is obtained from (B-46) upon taking the limit as as tends
to infinity. Thus,

- 1 (2)\ H 2 (ka)Gc d VW ( k e)-vejV (B-48)

Following an analysis which is based on some earlier work by
Hassejian and Ishimaru[R9], and Pathak and Huang [2] one obtains
the following approximation for (8-48):

H (2) (kaj€ [+. Lj2

Gs 1T i [~ 13/2 + 3 5 .p e12 +
(B-49)
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Gs is the perturbation Green's function and it is given asfollowg:

1 -je

bw f d(J ) (ka;.S) [P(aO]'eiVJJ (B-50)

where as before

H(,2)(ka)H V (k (kas (B-51)

P(ka;s) = H(2 ,(ka)+4_ H72)(ka)

One notes that in both (B-48) and (B-50), the observation point,
as well as the source point, is brought on to the surface of the cy-
linder (i.e., p'=p=a).

As in the TE case presented in section I of this appendix,
the perturbation ireen's function, GS of (B-50) can also be evalu-
ated asymptotically for the differene ranges of the parameters in-
volved via the Debye, Watson and creeping wave representations for
small, moderately small and large values of the arc length, kalil,
respectively. In part (Ma) of this appendix, the Debye approxi-
mation of (B-50) is examined. The Watson approximation and the
creeping wave representation of (B-50) is discussed subsequently
In parts (1ib) and (IIc), respectively.

a. Debye Approximation

The series expansion of P (ka;a s) resulting from the Debye
approximation can simply be ob ained from (B-15b) by changing ah
to j, which yields

Pv(ka;a s )  j 1 + _.__ 1 cosn + 0(i)]P -1 2sin 2 n sirn+Ja k V k

s nn +Jot s k si i(B-52a)

It can also be shown that the term Pv2 (ka;O) in (B-50) has the fol-
lowing form when it is expanded via the Debye approximation:

P-2 (ka;O) - -stn2n[1 - 17 + 0(B-52b)

where as before cosnw/ka.
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Substitution of ( -52) into (8-50) and keeping the terms only
up to the order of i/v , leads to

Gs GS ~J 2)G (B-53)

where

GS 1 GOj E k _E2e j.-j a~ (B-54)0 r. f e
0e kJ kJ &Y-+ja5J

and

k co-je 2 2 Fk + 2jcz ~ a~
Gs, k f d (k m&) S e-Jaf

(B-55)

A change of variable (i.e., )has been introduced in (B-

451) and it is recognized that cosv = v/ka and sinf=Jk2_ /k. Com-
parison of (B-54) and (A-38) reveals that these two equations are
the same as long as one uses the arclength, aj ) as the distance
between the source and the observation poi nt . This distance was
denoted by IxI in (A-38). Hence the same argument presented in
Appendix I can also be used here for the evaluation of (A-38), this
results in

(ja s 2 +y ~ d~a4 2  2 2 k~t
G ~ --. S) c 5 d

1s _d- 1 2 kaf

_T_ -)T'7 jj



= kz = jgs JkaIoI (B-56a)

6s= F J ; cc = -Iasi (B-56b)

In order to evaluate Gs  one rewrites (B-55) as follows:P1'

Gs  =k (1 _ cgs d f jc [e-J a jo (B-57)

Comparison of (B-17) and (B-57) reveals that the integrals involved
are the same as long as ah in (B-17) is replaced by as. Hence (B-
57) becomes

G p 1 as) )[k (4cs ] (B-58)

where the notation, ah c in Gh(h cs) of (B-58) indicates that h in
G of (B-19) will be reilaced by as" Or, more explicitly, (B-58)

can be rewritten as

Gs  ( -as da[ _ k -J sa + + e Ijka j

Q(iJ~ij) -aIIQjjka j e-k s a as O (B-59)

The derivative term in (B-58) or in (B-59) can be evaluated with the
aid of (B-22), resulting withkG h (ah-*a)l k2 '~a~

e-jk a Jalal ejkaII Q(js-kaIOI)e s ; s>O
kJ

(B-60)
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b. Watson Approximation

For moderately small distances from the source, one again em-
ploys the Watson approximation. In order to apply this approxi-
mation, one again starts by approximating the Hankel functions by
the Fock-type Airy functions as in (B-23?. Following the arguments
presented in part (1b), the Watson approximation for P (ka; a $
of (B-5i) can be readily written from (B-26) upon chan~ing a h to
CE s; that is

P (ka;cx5 t ~ c~ 1  + ~ mJ)[ 1 ~ak]~ +

+ 0O([ a1)] (B-61)

where a before a=m-1 (v-ka) and 2m 3 =ka. It can also be simply shown
that P' (ka;O) has the following form

V

P_2 (ka;O)- (m 1 G) 2  3 - + 0( i (B-52)
V(m_ 1) [k a] 2)]

Substitution of (B-61) and (B-52) into (B-SO) yields

GS Gs + Gs 1 + 'i0 (B-63)
p PO p1 Ta [k a]2

where

~- jkaIj J0 1a~
G S 2k,- f ds e (B-64)

and

Gs = ikalfI 1 d00 + 2jrjJNa5  e2 saJjj
P i 4 2r j Q J s[j + j , jii i x ] ( -65 )

In the process of obtaining (B-64) and (8-65), one employs
a change of variable s =-j2(.2 -k); and naturally M-ljaJJ i/.
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Evaluation of (B-64) via the method of inverse Laplace trans-
formation yields

o= td(kajj) f i + F erfc( j[fr~ kaTi)

-kal fdasjJ
e ek(B-66)

Since erfc(-z)=2-erfc(z), and z i one can show that

•3 -jkaMI I +Gs  jots e k +

e-jkaI f i2 2" [1-2z eZ2Q(z)]B

Comparison of JB-67) with the results obtained from the Debye
approximation for Gp given in (B-56) reveals after some manipu-

lation that (B-56) reduces to (B-67) for large values of the arc-
length, kale I and small values of as; whereas, one needs to conjecture
that

jkalal d )

should be replaced by

2)k )

TJ kale(

in order to obtain (8-56) from (B-67). (It is noted that the pre-
vious expression is the large argument approximation of the latter
one.)

Hence, one concludes that (8-56) is a more general result than
(B-67) because (B-56) goes to (B-67) for large values of the arc-
length where (8-67) is valid; whereas, (B-67) does not readily go
to (B-56) for small values of the arclength where (B-56) is valid.

In order to evaluate Gs of (B-65), one rewrites the equation
as follows Pl
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-1
Gs e y~J2 j f dse]

Pi - 00 Fsi [,j+Jj7-/ qj]

(B-68)

The integrals in (8-28) and (B-68) are the same with the exception
that oh in the former is replaced by as in the latter integral.

Hence, (B-68) becomes:

l= ) ~-~ h s)s j , (8-69)

where the rotation ah as in (B-69) indicates that ah in G h of (B-

30b) will be replaced by as in (B-69) as before. Or more Sxplicitly

- 1 d \[-j a ka e~kak
Gs t jao,+e

Pl s Q(Jb sfka I ) ;

cgs (B-70)

Comparison of (B-59) and (B-70) reveals that the latter one is
the special case of (B-58) for small values of c. One notes that
the derivative term in (B-69) or (B-70) can be obtained from (B-
33) by changing ah to a s

c. Creeping Wave Formulation

With both the source and the observation points on the surface
of the cyl inder (i.e., pp'I=O), (B-46) becomes

GS j Jas 1 00jC H (2) '(ka)
of te c li (ie, rp=) ( -4) becomes

A creeping wave or residue series representation will now be
given for (B-77). In the process of obtaining a residue series
expansion, one uses the Watson approximation of (B-23) into (B-71),
yielding
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s J e-jkaI.I 1 C.Jm
2km G f do -(1kw a

2m-co-ic IW()-ctmI( w2(a) (B-72)

The poles of the integrand in (B-72) will be denoted by as and they
are the roots of following characteristics equation p

wi(op ) - asmk'lw2(Op) = 0 (B-73)

As indicateg earlier for h , extensive numerical tables for the
values of a for different~ranges of the parameters (cxm) are also
given by Logan120], and they will not be included here for the sake
of brevity. From the calculus of residues and the differential
equation for the Airy functions (i.e., w2(a)- w2(o)=0), one can
show that

.2 -jaomI 

G - - s e'jkaIIj e es =-2km p -Icm (B-74)2k = a p-(smk )

In the TM case, as root (i.e., p=O case) corresponds to the surface
(gr Elliot) wave f8r the capacitive surface, whereas, there is no

root for the inductive surface and the summation in (B-74), for
tfis latter case, starts from p=1 (instead of p=O).
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